Skip to main content Accessibility help
×
Home

Synthesis, lattice structure, and band gap of ZnSnN2

  • Paul C. Quayle (a1), Keliang He (a1), Jie Shan (a1) and Kathleen Kash (a1)

Abstract

We report the synthesis of a direct gap semiconductor, ZnSnN2, by a plasma-assisted vapor–liquid–solid technique. Powder X-ray diffraction measurements of polycrystalline material yielded lattice parameters in good agreement with predicted values. Photoluminescence efficiency at room temperature was observed to be independent of excitation intensity between 103 and 108 W/cm2. The band gap was measured by photoluminescence excitation spectroscopy to be 1.7 ± 0.1 eV. The range of direct band gaps for the Zn(Si,Ge,Sn)N2 alloys is now predicted to extend from 4.5 to 1.7 eV, opening up this little-studied family of materials to a host of important applications.

Copyright

Corresponding author

Address all correspondence to Kathleen Kash atkathleen.kash@case.edu

References

Hide All
1Khan, M.A.: AlGaN multiple quantum well based deep UV LEDs and their applications. Phys. Status Solidi A 203, 1764 (2006).
2Mills, M.M.: The LED illumination revolution. Forbes, 02/27/2008.
3Wu, J., Walukiewicz, W., Yu, K.M., Shan, W., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Metzger, W.K., and Kurtz, S.: Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94, 6477 (2003).
4Punya, A., Lambrecht, W.R.L., and van Schilfgaarde, M.: Quasiparticle band structure of Zn-IV-N2 compounds. Phys. Rev. B 84, 165204 (2011).
5Feldberg, N., Keen, B., Aldous, J.D., Scanlon, D.O., Stampe, P.A., Kennedy, R.J., Reeves, R.J., Veal, T.D., and Durbin, S.M.: ZnSnN2: a new earth-abundant element semiconductor for solar cells. Proc. of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, p. 2524 (2012).
6Lahourcade, L., Coronel, N.C., Delaney, K.T., Shukla, S.K., Spaldin, N.A., and Atwater, H.A.: Structural and optoelectronic characterization of RF sputtered ZnSnN2. Adv. Mater. 25, 2562 (2013).
7Paudel, T.R. and Lambrecht, W.R.L.: First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds. Phys. Rev. B 79, 245205 (2009).
8Farrell, R.M., Young, E.C., Wu, F., DenBaars, S.P., and Speck, J.S.: Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semicond. Sci. Technol. 27, 024001 (2012).
9Halliburton, L.E., Edwards, G.J., Scripsic, M.P., Rakowsky, M.H., Schunemann, P.G., and Pollak, T.M.: Electron-nuclear double resonance of the zinc vacancy in ZnGeP2. Appl. Phys. Lett. 66, 2670 (1995).
10Hurd, A.J., Kelley, R.L., Eggert, R.G., and Lee, M.: Energy-critical elements for sustainable development. MRS Bull. 37, 405 (2012).
11Myers, T.H., Millecchia, M.R., Ptak, A.J., Ziemer, K.S., and Stinespring, C.D.: Influence of active nitrogen species on high temperature limitations for (0001) GaN growth by rf plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol., B 17, 1654 (1999).
12Peshek, T.J., Paudel, T.R., Kash, K., and Lambrecht, W.R.L.: Vibrational modes in ZnGeN2: Raman study and theory. Phys. Rev. B 77, 235213 (2008).
13Blanton, E., Zhao, P., He, K., Shan, J., Zhao, H., and Kash, K.: ZnGeN2: the effects of growth conditions on morphology, ordering and optical properties, in Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small Organic Molecules and Hybrids, edited by Sablon, K.A., Heier, J., Tatavarti, S.R., Fu, L., Nuesch, F.A., Brabec, C.J., Kippelen, B., Wang, Z., and Olson, D.C. (Mater. Res. Soc. Symp. Proc. 1493, Warrendale, PA, 2013).
14Lambrecht, W.R.: private communication (2013).
15Du, K., Bekele, C., Hayman, C.C., Angus, J.C., Pirouz, P., and Kash, K.: Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources. J. Cryst. Growth 310, 1057 (2008).
16Misaki, T., Tsuchiya, K., Sakai, D., Wakahara, A., Okada, H., and Yoshida, A.: Growth and characterization of ZnGeN2 by using remote-plasma enhanced metalorganic vapor phase epitaxy. Phys. Status Solidi C 0, 188 (2002).
17Davydov, V.Yu., Klochikhin, A.A., Emtsev, V.V., Kurdyukov, D.A., Ivanov, S.V., Vekshin, V.A., Bechstedt, F., Furthmuller, J., Aderhold, J., Graul, J., Mudryi, A.V., Harima, H., Hashimoto, A., Yamamoto, A., and Haller, E.E.: Band gap of hexagonal InN and InGaN alloys. Phys. Status Solidi B 234, 787 (2002).
18Walukiewicz, W., Ager, J.W. III, Yu, K.M., Liliental-Weber, Z., Wu, J., Li, S.X., Jones, R.E., and Denlinger, J.D.: Structure and electronic properties of InN and In-rich group III-nitride alloys. J. Phys. D: Appl. Phys. 39, R83 (2006).
19Osinsky, A., Fuflyigin, V., Zhu, L.D., Goulakov, A.B., Graff, J.W., and Schubert, E.F.: New concepts and preliminary results for SiC bipolar transistors: ZnSiN2 and ZnGeN2 heterojunction emitters. Proc. of the IEEE/Cornell Conference on High Performance Devices, Ithaca, NY, p. 168 (2000).
Type Description Title
WORD
Supplementary materials

Quayle Supplementary Material
Appendix

 Word (55 KB)
55 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed