Skip to main content Accessibility help

Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics

  • Gisele Azimi (a1), Hyuk-Min Kwon (a1) and Kripa K. Varanasi (a1)


Robust superhydrophobic surfaces can improve the performance of various applications. Considerable research has focused on developing superhydrophobic surfaces, but in these studies, superhydrophobicity was attained using polymeric materials, which deteriorate under harsh environments. Recently, it has been shown that rare-earth oxide ceramics are hydrophobic and since they are ceramics, they withstand harsh environments including high temperature. Here we fabricate a superhydrophobic surface by texturing a ceria pellet using laser ablation. We demonstrate water repellency by showing an impinging water droplet bouncing off the surface. This study extends the possibility of producing robust superhydrophobic ceramics using accessible techniques for industrial applications.


Corresponding author

Address all correspondence to Kripa K. Varanasi


Hide All
1.Quéré, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008).
2.Feng, X. and Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).
3.Rathgen, H. and Mugele, F.: Microscopic shape and contact angle measurement at a superhydrophobic surface. Faraday Discuss. 146, 49 (2010).
4.Bocquet, L. and Lauga, E.: A smooth future? Nat. Mater. 10, 334 (2011).
5.Deng, X., Mammen, L., Butt, H.J., and Vollmer, D.: Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67 (2012).
6.Bird, C.J., Dhiman, R., Kwon, H.M., and Varanasi, K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385 (2013).
7.Srinivasan, S., Choi, W., Park, K.C., Chhatre, S.S., Cohen, R.E., and McKinley, G.H.: Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter 9, 5691 (2013).
8.Vakarelski, I.U., Patankar, N.A., Marston, J.O., Chan, D.Y.C., and Thoroddsen, S.T.: Stabilization of leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274 (2012).
9.Bhushan, B. and Jung, Y.C.: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1 (2011).
10.Shirtcliffe, N.J., McHale, G., Newton, M.I., and Zhang, Y.: Superhydrophobic copper tubes with possible flow enhancement and drag reduction. ACS Appl. Mater. Interfaces 1, 1316 (2009).
11.Maitra, T., Tiwari, M.K., Antonini, C., Schoch, P., Jung, S., Eberle, P., and Poulikakos, D.: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172 (2014).
12.Eberle, P., Tiwari, M.K., Maitra, T., and Poulikakos, D.: Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 6, 4874 (2014).
13.Guo, P., Zheng, Y., Wen, M., Song, C., Lin, Y., and Jiang, L.: Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642 (2012).
14.Antonini, C., Innocenti, M., Horn, T., Marengo, M., and Amirfazli, A.: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 58 (2011).
15.Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., and Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699 (2010).
16.Meuler, A.J., McKinley, G.H., and Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048 (2010).
17.Lv, J., Song, Y., Jiang, L., and Wang, J.: Bio-inspired strategies for anti-icing. ACS Nano 8, 3152 (2014).
18.Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C.M., and Poulikakos, D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059 (2011).
19.Torresin, D., Tiwari, M.K., Del Col, D., and Poulikakos, D.: Flow condensation on copper-based nanotextured superhydrophobic surfaces. Langmuir 29, 840 (2013).
20.Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., and Wang, E.N.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179 (2013).
21.Anand, S., Paxson, A.T., Dhiman, R., Smith, J.D., and Varanasi, K.K.: Enhanced condensation on lubricant- impregnated nanotextured surfaces. ACS Nano 6, 10122 (2012).
22.Patankar, N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 1613 (2010).
23.Dietz, C., Rykaczewski, K., Fedorov, A.G., and Joshi, Y.: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl. Phys. Lett. 97, 033104 (2010).
24.Narhe, R.D., Khandkar, M.D., Shelke, P.B., Limaye, A.V., and Beysens, D.A.: Condensation-induced jumping water drops. Phys. Rev. E 80, 031604 (2009).
25.Boreyko, J.B. and Chen, C.H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).
26.Dorrer, C. and Rühe, J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820 (2007).
27.Verho, T., Bower, C., Andrew, P., Franssila, S., Ikkala, O., and Ras, R.H.A.: Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673 (2011).
28.Liu, K. and Jiang, L.: Metallic surfaces with special wettability. Nanoscale 3, 825 (2011).
29.Wagterveld, R.M., Berendsen, C.W.J., Bouaidat, S., and Jonsmann, J.: Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8. Langmuir 22, 10904 (2006).
30.Khorasani, M.T., Mirzadeh, H., and Kermani, Z.: Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242, 339 (2005).
31.Shirtcliffe, N.J., Aqil, S., Evans, C., McHale, G., Newton, M.I., Perry, C.C., and Roach, P.: The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. J. Micromech. Microeng. 14, 1384 (2004).
32.Drzymala, J.: Hydrophobicity and collectorless floatation of inorganic materials. Adv. Colloid Interface Sci. 50, 143 (1994).
33.Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A.T., and Varanasi, K.K.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315 (2013).
34.Tian, Y. and Jiang, L.: Intrinsically robust hydrophobicity. Nat. Mater. 12, 291 (2013).
35.Martínez, L., Román, E., de Segovia, J.L., Poupard, S., Creus, J., and Pedraza, F.: Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc. Appl. Surf. Sci. 257, 6202 (2011).
36.Jiang, K.: Fabrication and Catalytic Property of Cerium Oxide Nanomaterials. Ph.D. Thesis, University of Nebraska, Lincoln, 2011, Ch. 2.
37.Lawrence, N.J., Jiang, K., and Cheung, C.L.: Formation of a porous cerium oxide membrane by anodization. Chem. Commun. 47, 2703 (2011).
38.Gentleman, M.M., Ruud, J.A., Blohm, M.L., and Manoharan, M.: Wetting resistant materials and articles made therewith. US Patent/US8062775 B2, 2011.
39.Wang, X., Shephard, J.D., Dear, F.C., and Hand, D.P.: Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J. Am. Ceram. Soc. 91, 391 (2008).
40.Samant, A.N. and Dahotre, N.B.: Laser machining of structural ceramics—a review. J. Eur. Ceram. Soc. 29, 969 (2009).
41.Kietzig, A.M., Hatzikiriakos, S.G., and Englezos, P.: Patterned superhydrophobic metallic surfaces. Langmuir 25, 4821 (2009).
42.Kim, S.H., Sohn, I.-B., and Jeong, S.: Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining. Appl. Surf. Sci. 255, 9717 (2009).
43.Vorobyev, A.Y. and Guo, C.: Femtosecond laser nanostructuring of metals. Opt. Express 14, 2164 (2006).
44.Ben-Yakar, A., Byer, R.L., Harkin, A., Ashmore, J., Stone, H.A., Shen, M., and Mazur, E.: Morphology of femtosecond-laser-ablated borosilicate glass surfaces. Appl. Phys. Lett. 83, 3030 (2003).
45.Kurokawa, A., Odaka, K., Azuma, Y., Fujimoto, T., and Kojima, I.: Diagnosis and cleaning of carbon contamination on SiO2 thin film. J. Surf. Anal. 15, 337 (2009).
46.Kim, K.D., Tai, W.S., Kim, Y.D., Cho, S.-J., Bae, I.S., Boo, J.H., Lee, B.C., Yang, K.H., and Park, O.K.: Change in water contact angle of carbon contaminated TiO2 surfaces by high-energy electron beam. Bull. Korean Chem. Soc. 30, 1067 (2009).
47.Knowles, M.R.H., Rutterford, G., Karnakis, D., and Ferguson, A.: Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int. J. Adv. Manuf. Technol. 33, 95 (2007).

Related content

Powered by UNSILO

Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics

  • Gisele Azimi (a1), Hyuk-Min Kwon (a1) and Kripa K. Varanasi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.