Skip to main content Accessibility help

The structure and mechanical properties of Cu50Ni50 alloy nanofoams formed via polymeric templating

  • Chang-Eun Kim (a1) (a2), Raheleh M. Rahimi (a1) and David F. Bahr (a1)


The authors demonstrate that multicomponent metallic alloy nanofoams can be synthesized by the polymeric templating method. The present approach enabled alloy compositions not accessible via commonly used dealloying or co-deposition methods. The authors report the synthesis of a Cu50Ni50 alloy nanofoam using electrospinning polymeric templating, which exhibits distinct polycrystallinity, process-driven segregation, and enhanced mechanical strength over pure Cu nanofoams. Transmission electron microscopy revealed microscopic grain formation and their variable compositions. The processing method is applicable to the synthesis of a wide range of multicomponent metal porous materials, creating new research opportunities for noble alloy foams not available through wet electrochemical routes.


Corresponding author

Address all correspondence to David Bahr at


Hide All
1.Luc, W. and Jiao, F.: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges. ACS Catal. 7, 5856 (2017).
2.Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).
3.Neogi, A., He, L., and Abdolrahim, N.: Atomistic simulations of shock compression of single crystal and core-shell Cu@ Ni nanoporous metals. Jpn J. Appl. Phys. 126, 015901 (2019).
4.Biener, J., Nyce, G.W., Hodge, A.M., Biener, M.M., Hamza, A.V., and Maier, S.A.: Nanoporous plasmonic metamaterials. Adv. Mater. 20, 1211 (2008).
5.McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).
6.Stratmann, M. and Rohwerder, M.: Materials science: a pore view of corrosion. Nature 410, 420 (2001).
7.Erlebacher, J.: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).
8.Hakamada, M. and Mabuchi, M.: Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit. Rev. Solid State Mater. Sci. 38, 262 (2013).
9.Li, G.G. and Wang, H.: Dealloyed nanoporous gold catalysts: from macroscopic foams to nanoparticulate architectures. ChemNanoMat 4, 897 (2018).
10.Hodge, A., Doucette, R., Biener, M., Biener, J., Cervantes, O., and Hamza, A.: Ag effects on the elastic modulus values of nanoporous Au foams. J. Mater. Res. 24, 1600 (2009).
11.Kim, C.-E., Rahimi, R.M., Hightower, N., Mastorakos, I., and Bahr, D.F.: Synthesis, microstructure, and mechanical properties of polycrystalline Cu nano-foam. MRS Adv. 3, 469 (2018).
12.Zhang, J., Baró, M.D., Pellicer, E., and Sort, J.: Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale 6, 12490 (2014).
13.Greiner, A. and Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670 (2007).
14.Liu, J., Chang, M.J., and Du, H.L.: Facile preparation of cross-linked porous poly(vinyl alcohol) nanofibers by electrospinning. Mater. Lett. 183, 318 (2016).
15.Eick, B.M. and Youngblood, J.P.: SiC nanofibers by pyrolysis of electrospun preceramic polymers. J. Mater. Sci. 44, 160 (2009).
16.Spencer, P.J. and Slough, W.: Applied and experimental chemical thermodynamics at high temperatures. High Temp. High Press. 2, 123 (1970).
17.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
18.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
19.Bahr, D.F. and Morris, D.J.: Nanoindentation: localized probes of mechanical behavior of materials. In Springer Handbook of Experimental Solid Mechanics, ed. Sharpe, W.N. (Springer, New York NY, 2008), pp. 389404.
20.Divinski, S., Ribbe, J., Schmitz, G., and Herzig, C.: Grain boundary diffusion and segregation of Ni in Cu. Acta Mater. 55, 3337 (2007).
21.Zen, E.A.: Validity of “Vegard's Law” 41(5–6), 523524 (1956).
22.Denton, A.R. and Ashcroft, N.W.: Vegard's law. Phys. Rev. A 43, 3161 (1991).
23.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
24.Weisweiler, W.: Kinetic studies of the catalytic graphitizing of glass-like carbon with the aid of nickel. High Temp. High Press. 2, 187 (1970).
25.Ashby, M.: The properties of foams and lattices. Philos. Trans. R. Soc. A 364, 15 (2006).
26.Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Li, T., Wu, J., and Huang, L.: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180 (2017).
27.Xiao, X., Song, H., Lin, S., Zhou, Y., Zhan, X., Hu, Z., Zhang, Q., Sun, J., Yang, B., and Li, T.: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 1 (2016).
28.Burpo, F.J., Nagelli, E.A., Losch, A.R., Bui, J.K., Forcherio, G.T., Baker, D.R., McClure, J.P., Bartolucci, S.F., and Chu, D.D.: Salt-templated platinum-copper porous macrobeams for ethanol oxidation. Catalysts 9, 662 (2019).
29.Burpo, F.J., Nagelli, E.A., Mitropoulos, A.N., Bartolucci, S.F., McClure, J.P., Baker, D.R., Losch, A.R., and Chu, D.D.: Salt-templated platinum–palladium porous macrobeam synthesis. MRS Commun. 9, 280 (2019).
Type Description Title
Supplementary materials

Kim et al. supplementary material
Kim et al. supplementary material

 Word (40 KB)
40 KB

The structure and mechanical properties of Cu50Ni50 alloy nanofoams formed via polymeric templating

  • Chang-Eun Kim (a1) (a2), Raheleh M. Rahimi (a1) and David F. Bahr (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.