Skip to main content Accessibility help
×
Home

Structure and composition of Au/Co magneto-plasmonic nanoparticles

  • Nabraj Bhattarai (a1), Gilberto Casillas (a1), Subarna Khanal (a1), Daniel Bahena (a1), J. Jesus Velazquez-Salazar (a1), Sergio Mejia (a2), Arturo Ponce (a1), Vinayak P. Dravid (a3), Robert L. Whetten (a1), Marcelo M. Mariscal (a4) and Miguel Jose-Yacaman (a1)...

Abstract

The fabrication of bimetallic magnetic nanoparticles (NPs) smaller than the size of single magnetic domain is very challenging because of the agglomeration, non-uniform size, and possible complex chemistry at nanoscale. In this paper, we present an alloyed ferromagnetic 4 ± 1 nm thiolated Au/Co magnetic NPs with decahedral and icosahedral shape. The NPs were characterized by Cs-corrected scanning transmission electron microscopy (STEM) and weretheoretically studied by Grand Canonical Monte Carlo simulations. Comparison of Z-contrast imaging and energy dispersive x-ray spectroscopy used jointly with STEM simulated images from theoretical models uniquely showed an inhomogeneous alloying with minor segregation. The magnetic measurements obtained from superconducting quantum interference device magnetometer exhibited ferromagnetic behavior. This magnetic nanoalloy in the range of single domain is fully magnetized and carries significance as a promising candidate for magnetic data recording, permanent magnetization, and biomedical applications.

Copyright

Corresponding author

Address all correspondence to Miguel Jose-Yacaman atmiguel.yacaman@utsa.edu

References

Hide All
1.Lu, A.-H., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., and Schüth, F.: Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem., Int. Ed. 43, 4303 (2004).
2.Reiss, G. and Hutten, A.: Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4, 725 (2005).
3.Gleich, B. and Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214 (2005).
4.Grass, R.N., Athanassiou, E.K., and Stark, W.J.: Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem., Int. Ed. 46, 4909 (2007).
5.Elliott, D.W. and Zhang, W.X.: Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 35, 4922 (2001).
6.Dobson, J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55 (2006).
7.Kobayashi, Y., Horie, M., Konno, M., Rodríguez-González, B., and Liz-Marzán, L.M.: Preparation and properties of silica-coated cobalt nanoparticles†. J. Phys. Chem. B 107, 7420 (2003).
8.Gao, J., Gu, H., and Xu, B.: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097 (2009).
9.Bao, Y. and Krishnan, K.M.: Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications. J. Magn. Magn. Mater. 293, 15 (2005).
10.Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 (2003).
11.Lu, Z., Prouty, M.D., Guo, Z., Golub, V.O., Kumar, C.S.S.R., and Lvov, Y.M.: Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21, 2042 (2005).
12.Lu, A.H., Salabas, E.e.L., and Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 46, 1222 (2007).
13.Iwaki, T., Kakihara, Y., Toda, T., Abdullah, M., and Okuyama, K.: Preparation of high coercivity magnetic FePt nanoparticles by liquid process. J. App. Phys. 94, 6807 (2003).
14.Chen, M., Kim, J., Liu, J.P., Fan, H., and Sun, S.: Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132 (2006).
15.Sun, S., Murray, C., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).
16.Weller, D. and Moser, A.: Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999).
17.Rapallo, A., Olmos-Asar, J., Oviedo, O., Ludueña, M., Ferrando, R., and Mariscal, M.: Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J. Phys. Chem. C 116, 17210 (2012).
18.Oviedo, O., Leiva, E., and Mariscal, M.: Diffusion mechanisms taking place at the early stages of cobalt deposition on Au (111). J. Phys.: Condens. Matter. 20, 265010 (2008).
19.Mayoral, A., Mejia-Rosales, S., Mariscal, M.M., Perez-Tijerina, E., and Jose-Yacaman, M.: The Co-Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale 2, 2647 (2010).
20.Bao, F., Li, J.-F., Ren, B., Jian-Lin YaoGu, R.-A.and Tian, Z.-Q.: Synthesis and characterization of Au@ Co and Au@ Ni core-shell nanoparticles and their applications in surface-enhanced Raman Spectroscopy. J. Phys. Chem. C 112, 345 (2008).
21.Bao, Y., Calderon, H., and Krishnan, K.M.: Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J. Phys. Chem. C 111, 1941 (2007).
22.Wang, D. and Li, Y.: One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 132, 6280 (2010).
23.Auten, B.J., Hahn, B.P., Vijayaraghavan, G., Stevenson, K.J. and Chandler, B.D.: Preperation and Characterization of 3 nm Magnetic NiAu Nanoparticles. J. Phys. Chem. C 112, 5365 (2008).
24.Mariscal, M., Olmos-Asar, J., Gutierrez-Wing, C., Mayoral, A., and Yacaman, M.: On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 12, 11785 (2010).
25.Frenkel, A., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y., and Rafailovich, M.: Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J. Chem. Phys. 123, 184701 (2005).
26.Brust, M., Schiffrin, D.J., Bethell, D., and Kiely, C.J.: Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv. Mater. 7, 795 (1995).
27.Bhattarai, N., Casillas, G., Khanal, S., Salazar, J.J.V., Ponce, A., and Jose-Yacaman, M.: Origin and shape evolution of core–shell nanoparticles in Au–Pd: from few atoms to high Miller index facets. J. Nanopart. Res. 15, 1 (2013).
28.Bahena, D., Bhattarai, N., Santiago, U., Tlahuice, A., Ponce, A., Bach, S.B.H., Yoon, B., Whetten, R.L., Landman, U., and Jose-Yacaman, M.: STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J. Phys. Chem. Lett. 4, 975 (2013).
29.Pennycook, S.: Z-contrast STEM for materials science. Ultramicroscopy 30, 58 (1989).
30.Mariscal, M.M., Velázquez-Salazar, J.J., and Yacaman, M.J.: Growth mechanism of nanoparticles: theoretical calculations and experimental results. CrystEngComm 14, 544 (2012).
31.Mariscal, M., Oviedo, O., and Leiva, E.: On the selection of facets in metallic nanoparticles. J. Mater. Res. 27, 1777 (2012).
32.Cleri, F. and Rosato, V.: Tight-binding potentials for transition metals and alloys. Phy. Rev. B 48, 22 (1993).
33.Frankel, D. and Smith, B.: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, CA, 1996).
34.Lide, D.R.: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, FL, 1999).
35.Punkkinen, M.P., Hu, Q.-M., Kwon, S.K., Johansson, B., Kollár, J., and Vitos, L.: Surface properties of 3 d transition metals. Philos. Mag. 91, 3627 (2011).
36.Zólyomi, V., Vitos, L., Kwon, S., and Kollár, J.: Surface relaxation and stress for 5d transition metals. J. Phys.: Condens. Matter. 21, 095007 (2009).
37.Lorenz, W. and Staikov, G.: 2D and 3D thin film formation and growth mechanisms in metal electrocrystallization—an atomistic view by in situ STM. Surf. Sci. 335, 32 (1995).
38.Guo, H., Li, J. and Liu, B.: Atomistic modeling and thermodynamic interpretation of the bridging phenomenon observed in the Co-Au system. Phy. Rev. B 70, 195434 (2004).
39.Bochicchio, D. and Ferrando, R.: Morphological instability of core-shell metallic nanoparticles. Phy. Rev. B 87, 165435 (2013).
40.Ishizuka, K.: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71 (2002).
41.Olmos-Asar, J.A., Rapallo, A., and Mariscal, M.M.: Development of a semiempirical potential for simulations of thiol–gold interfaces. Application to thiol-protected gold nanoparticles. Phys. Chem. Chem. Phys. 13, 6500 (2011).
42.Caruso, A., Wang, L., Jaswal, S., Tsymbal, E.Y., and Dowben, P.A.: The interface electronic structure of thiol terminated molecules on cobalt and gold surfaces. J. Mater. Sci. 41, 6198 (2006).
43.Kechrakos, D. and Trohidou, K.N.: Magnetic properties of dipolar interacting single-domain particles. Phy. Rev. B 58, 12169 (1998).
44.Dormann, J.L., Fiorani, D., and Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 283 (2007).
Type Description Title
WORD
Supplementary materials

Bhattarai Supplementary Materials
Supplementary Materials

 Word (2.2 MB)
2.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed