Skip to main content Accessibility help

Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li–S batteries

  • Vladimir P. Oleshko (a1) (a2), Jenny Kim (a1), Jennifer L. Schaefer (a1), Steven D. Hudson (a1), Christopher L. Soles (a1), Adam G. Simmonds (a3), Jared J. Griebel (a3) (a4), Richard S. Glass (a3), Kookheon Char (a4) and Jeffrey Pyun (a3) (a4)...


Poly[sulfur-random-1,3-diisopropenylbenzene (DIB)] copolymers synthesized via inverse vulcanization form electrochemically active polymers used as cathodes for high-energy density Li–S batteries, capable of enhanced capacity retention (1005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. In this prospective, we demonstrate how analytical electron microscopy can be employed as a powerful tool to explore the origins of the enhanced capacity retention. We analyze morphological and compositional features when the copolymers, with DIB contents up to 50% by mass, are blended with carbon nanoparticles. Replacing the elemental sulfur with the copolymers improves the compatibility and interfacial contact between active sulfur compounds and conductive carbons. There also appears to be improvements of the cathode mechanical stability that leads to less cracking but preserving porosity. This compatibilization scheme through stabilized organosulfur copolymers represents an alternative strategy to the nanoscale encapsulation schemes which are often used to improve the cycle life in high-energy density Li–S batteries.


Corresponding author

Address all correspondence to Vladimir P. Oleshko


Hide All
1.Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.-M.: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19 (2012).
2.BBC News Science & Environment: Eternal’ solar plane's records are confirmed, 24 December 2010,
3.Oleshko, V.P., Scordilis-Kelley, C., Xiao, A., Affinito, J., Talyossef, Y., Elazari, R., Grinblat, Y., and Aurbach, D.: Characterization of advanced high-energy density Li-S batteries by FEAEM, SEM/EDS X-ray spectral imaging and feature sizing/chemical typing techniques. Microsc. Microanal. 15, 1398 (2009).
4.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulfur cathode for lithium–sulfur batteries. Nat. Mater. 8, 500 (2009).
5.Li, X., Cao, Y., Qi, W., Saraf, L.V., Xiao, J., Nie, Z., Mietek, J., Zhang, J.-G., Schwenzer, B., and Liu, J.: Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J. Mater. Chem. 21, 16603 (2011).
6.Ji, X., Evers, S., Black, R., and Nazar, L.F.: Stabilizing lithium–sulfur cathodes using polysulfide reservoirs. Nat. Commun. 2, 325 (2011).
7.Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A., and Archer, L.A.: Porous hollow carbon @ sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed., 50, 5904 (2011).
8.Elazari, R., Salitra, G., Garsuch, A., Panchenko, A., and Aurbach, D.: Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641 (2011).
9.Ji, L., Rao, M., Aloni, S., Wang, L., Cairns, E.J., and Zhang, Y.: Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4, 5053 (2011).
10.Liang, C., Dudney, N.J., and Howe, J.Y.: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724 (2009).
11.Schuster, J., He, G., Mandlmeier, B., Yim, T., Lee, K.T., Bein, T., and Nazar, L.F.: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591 (2012).
12.Demir-Cakan, R., Morcrette, M., Nouar, F., Davoisne, C., Devic, T., Gonbeau, D., Dominko, R., Serre, C., Ferey, G., and Tarascon, J.-M.: Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154 (2011).
13.Cao, Y., Li, X., Aksay, I.A., Lemmon, J., Nie, Z., Yang, Z., and Liu, J.: Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. J. Phys. Chem. Chem. Phys. 13, 7660 (2011).
14.Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J., and Zhang, Y.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522 (2011).
15.Yang, Y., McDowell, M.T., Jackson, A., Cha, J.J., Hong, S.S., and Cui, Y.: New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486 (2010).
16.Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S., and Zhao, T.: Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057 (2011).
17.Wang, J., Yang, J., Wan, C., Du, K., Xie, J., and Xu, N.: Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 13, 487 (2003).
18.Scordilis-Kelley, C.A., Mikhaylik, Y., Kovalev, I., Oleshko, V.P., Campbell, C., and Affinito, J.D.: Electrochemical cells comprising porous structures comprising sulfur Int. Patent Appl. No. WO 2011/031297 A2, filed by Sion Power Corp. 08. 28. 2009; published 03. 17. 2011.
19.Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.-C., and Cui, Y.: Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat. Commun. 4, 1331 (2013).
20.Li, W., Zheng, G., Yang, Y., Seh, Z.H., Liu, N., and Cui, Y.: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. USA 110, 7148 (2013).
21.Liu, M.L., Visco, S.J., and Dejonghe, L.C.: Novel solid redox polymerization electrodes. All-solid-state, thin-film, rechargeable lithium batteries. J. Electrochem. Soc. 138, 1891 (1991).
22.Liu, M.L., Visco, S.J., and Dejonghe, L.C.: Novel solid redox polymerization electrodes. Electrochemical properties. J. Electrochem. Soc. 138, 1896 (1991).
23.Chao, Z.S., Lan, Z., and Yu, J.: Preparation and electrochemical properties of polysulfide polypyrrole. J. Power Sources 196, 10263 (2011).
24.Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J., and Liu, J.: A soft approach to encapsulate sulfur. Adv. Mater. 24, 1176 (2012).
25.Yang, Y., Zheng, G., Misra, S., Nelson, J., Toney, M.F., and Cui, Y.: High-capacity micrometer-sized Li2S particles as cathode materials. J. Am. Chem. Soc. 134, 15387 (2012).
26.Yao, H., Zheng, G., Hsu, P.-C., Kong, D., Cha, J.J., Li, W., Seh, Z.W., McDowell, M.T., Yan, K., Liang, Z., Narasihman, V.K., and Cui, Y.: Improving lithium–sulfur batteries through spatial control of sulfur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014).
27.Brückner, J., Thieme, S., Böttger-Hiller, F., Bauer, I., Grossmann, H.T., Strubel, P., Althues, H., Spange, S., and Kaskel, S.: Carbon- based anodes for lithium sulfur full cells with high cycle stability. Adv. Funct. Mater. 24, 1284 (2013).
28.Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K., and Tatsumisago, M.: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5, 701 (2003).
29.Hassoun, J. and Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371 (2010).
30.Hassoun, J. and Scrosati, B.: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv. Mater. 22, 5198 (2010).
31.Hassoun, J., Sun, Y.-K., and Scrosati, B.: Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J. Power Sources 196, 343 (2011).
32.Hassoun, J., Kim, J., Lee, D.-J., Jung, H.-G., Lee, S.-M., Sun, Y.-K., and Scrosati, B.: A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon–sulfur battery. J. Power Sources 202, 308 (2012).
33.Chung, W.-J., Griebel, J.J., Kim, E.-T., Yoon, H.-S., Simmonds, A.G., Ji, H.-J., Dirlam, P.T., Glass, R.S., Wie, J.J., Nguyen, N.A., Guralnick, B.W., Park, J., Somogyi, A., Theato, P., Mackay, M.E., Sung, Y.-E., Char, K.-C., and Pyun, J.: The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).
34.Simmonds, A.G., Griebel, J.J., Park, J., Kim, K.R., Chung, W.J., Oleshko, V.P., Kim, J., Kim, E.T., Glass, R.S., Soles, C.L., Sung, Y.-E., Char, K., Pyun, J.: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries. ACS Macro Lett. 3, 229 (2014).
35.Griebel, J.J., Li, G., Glass, R.S., Char, K., and Pyun, J.: Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li–S batteries. J. Polym. Sci. A, Polym. Chem. 53, 173 (2015).
36.Tatsuma, T., Sotomura, T., Sato, T., Buttry, D.A., and Oyama, N.: Dimercaptan-polyaniline cathodes for lithium batteries: addition of a polypyrrole derivative for rapid charging. J. Electrochem. Soc. 142, L182 (1995).
37.Kiya, Y., Henderson, J.C., and Abruna, H.D.: 4-Amino-4H-1,2,4-triazole-3,5-dithiol a modifiable organosulfur compound as a high-energy cathode for lithium-ion rechargeable batteries. J. Electrochem. Soc. 154, A844 (2007).
38.Griebel, J.J., Namnabat, S., Kim, E.-T., Himmbelhuber, R., Moronta, D.H., Chung, W.J., Simmonds, A.G., Ngyugen, N., Mackay, M.E., Char, K., Glass, R.S., Norwood, R.A., and Pyun, J.: New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv. Mater. 26, 3014 (2014).
39.Egerton, R.F.: Electron Energy-Loss Spectroscpoy in the Electron Microscope, 3rd ed. (Springer, NY, 2011), pp. 197202.
Type Description Title
Supplementary materials

Oleshko supplementary material
Oleshko supplementary material 1

 Word (15.2 MB)
15.2 MB

Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li–S batteries

  • Vladimir P. Oleshko (a1) (a2), Jenny Kim (a1), Jennifer L. Schaefer (a1), Steven D. Hudson (a1), Christopher L. Soles (a1), Adam G. Simmonds (a3), Jared J. Griebel (a3) (a4), Richard S. Glass (a3), Kookheon Char (a4) and Jeffrey Pyun (a3) (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed