Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T19:20:48.496Z Has data issue: false hasContentIssue false

Strategies for elemental mapping from energy-filtered TEM of polymeric materials

Published online by Cambridge University Press:  13 August 2018

Brooke Kuei
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Bernd Kabius
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Jennifer L. Gray
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Enrique D. Gomez*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
*
Address all correspondence to Enrique D. Gomez at edg12@psu.edu
Get access

Abstract

Energy-filtered transmission electron microscopy provides an opportunity to map the nanoscale elemental composition in polymeric systems. Nevertheless, it presents its own set of unique challenges in its application to soft materials. Here, we outline an optimized protocol for elemental mapping in soft materials using sulfur mapping of polymer/fullerene mixtures as an example. Three factors are crucial: (1) focusing at zero-loss, (2) using an objective aperture, and (3) maximizing signal-to-noise and counts for the chosen imaging conditions. Analyzing the corresponding source images, bright field images, and thickness maps can ensure optimum conditions are achieved for elemental mapping of polymers.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eppe, R., Fischer, E.W., and Stuart, H.A.: Morphologische strukturen in Polyathylenen, Polyamiden. J. Polym. Sci. XXXIV, 721 (1959).Google Scholar
2.Bassett, D.C., Frank, F.C., and Keller, A.: Some new habit features in crystals of long chain compounds part IV. the fold surface geometry of monolayer polyethylene crystals and its relevance to fold packing and crystal growth. Philos. Mag. 8, 1753 (1963).Google Scholar
3.Carter, C. Barry and Williams, D.B.: Transmission Electron Microscopy (Springer, New York, NY, 2009).Google Scholar
4.Leijten, Z.J.W.A., Keizer, A.D.A., de With, G., and Friedrich, H.: Quantitative analysis of electron beam damage in organic thin films. J. Phys. Chem. B. 121, 10552 (2017).Google Scholar
5.Guo, C., Allen, F.I., Lee, Y., Le, T.P., Song, C., Ciston, J., Minor, A.M., and Gomez, E.D.: Probing local electronic transitions in organic semiconductors through energy-loss spectrum imaging in the transmission electron microscope. Adv. Funct. Mater. 25, 6071 (2015).Google Scholar
6.Kozub, D.R., Vakhshouri, K., Kesava, S.V., Wang, C., Hexemer, A., and Gomez, E.D.: Direct measurements of exciton diffusion length limitations on organic solar cell performance. Chem. Commun. 48, 5859 (2012).Google Scholar
7.Kozub, D.R., Vakhshouri, K., Orme, L.M., Wang, C., Hexemer, A., and Gomez, E.D.: Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology. Macromolecules 44, 5722 (2011).Google Scholar
8.Mor, G.K., Le, T.P., Vakhshouri, K., Kozub, D.R., and Gomez, E.D.: Elemental mapping of interfacial layers at the cathode of organic solar cells. ACS Appl. Mater. Interfaces 6, 19638 (2014).Google Scholar
9.Gomez, E.D., Panday, A., Feng, E.H., Chen, V., Stone, G.M., Minor, A.M., Kisielowski, C., Downing, K.H., Borodin, O., Smith, G.D., and Balsara, N.P.: Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212 (2009).Google Scholar
10.Drummy, L.F., Davis, R.J., Moore, D.L., Durstock, M., Vaia, R.A., and Hsu, J.W.P.: Molecular-scale and nanoscale morphology of P3HT:PCBM bulk heterojunctions: energy-filtered TEM and low-dose HREM†. Chem. Mater. 23, 907 (2011).Google Scholar
11.Herzing, A.A., Richter, L.J., and Anderson, I.M.: 3D Nanoscale characterization of thin-film organic photovoltaic device structures via spectroscopic contrast in the TEM. J. Phys. Chem. C. 114, 17501 (2010).Google Scholar
12.Allen, F.I., Watanabe, M., Lee, Z., Balsara, N.P., and Minor, A.M.: Chemical mapping of a block copolymer electrolyte by low-loss EFTEM spectrum-imaging and principal component analysis. Ultramicroscopy 111, 239 (2011).Google Scholar
13.Allen, F.I., Comolli, L.R., Kusoglu, A., Modestino, M.A., Minor, A.M., and Weber, A.Z.: Morphology of hydrated as-cast nafion revealed through cryo electron tomography. ACS Macro Lett. 4, 1 (2014).Google Scholar
14.Linares, E.M., Leite, C.A.P., Valadares, L.F., Silva, C.A., Rezende, C.A., and Galembeck, F.: Molecular mapping by low-energy-loss energy-filtered transmission electron microscopy imaging. Anal. Chem. 81, 2317 (2009).Google Scholar
15.Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, 2011).Google Scholar
16.Gomez, E.D., Ruegg, M.L., Minor, A.M., Kisielowski, C., Downing, K.H., Glaeser, R.M., and Balsara, N.P.: Interfacial concentration profiles of rubbery polyolefin lamellae determined by quantitative electron microscopy. Macromolecules 41, 156 (2008).Google Scholar
17.Sawyer, L.C., Grubb, D.T., and Meyers, G.F.: Polymer Microscopy, 3rd ed. (Springer, New York, 2008), pp. 146160.Google Scholar
18.Kesava, S.V., Fei, Z., Rimshaw, A.D., Wang, C., Hexemer, A., Asbury, J.B., Heeney, M., and Gomez, E.D.: Domain compositions and fullerene aggregation govern charge photogeneration in polymer/fullerene solar cells. Adv. Energy Mat. 4, 1400116 (2014).Google Scholar
19.Vakhshouri, K., Kesava, S.V., Kozub, D.R., and Gomez, E.D.: Characterization of the mesoscopic structure in the photoactive layer of organic solar cells: A focused review. Mater. Lett. 90, 97 (2013).Google Scholar
20.Vajjala Kesava, S., Dhanker, R., Kozub, D.R., Vakhshouri, K., Choi, U.H., Colby, R.H., Wang, C., Hexemer, A., Giebink, N.C., and Gomez, E.D.: Mesoscopic structural length scales in P3HT/PCBM mixtures remain invariant for various processing conditions. Chem. Mater. 25, 2812 (2013).Google Scholar
21.Vakhshouri, K., Kozub, D.R., Wang, C., Salleo, A., and Gomez, E.D.: Effect of miscibility and percolation on electron transport in amorphous poly(3-Hexylthiophene)/Phenyl-C61-Butyric Acid methyl ester blends. Phys. Rev. Lett. 108, 026601 (2012).Google Scholar
22.Guo, C., Kozub, D.R., Kesava, S.V., Wang, C., Hexemer, A., and Gomez, E.D.: Signatures of multiphase formation in the active layer of organic solar cells from resonant soft x-ray scattering. ACS Macro Lett. 2, 185 (2013).Google Scholar
23.Kuei, B. and Gomez, E.D.: Chain conformations and phase behavior of conjugated polymers. Soft Matter 13, 49 (2017).Google Scholar
24.Kelly, M.A., Roland, S., Zhang, Q.Q., Lee, Y.M., Kabius, B., Wang, Q., Gomez, E.D., Neher, D., and You, W.: Incorporating fluorine substitution into conjugated polymers for solar cells: three different means, same results. J. Phys. Chem. C. 121, 2059 (2017).Google Scholar
25.Lee, C., Li, Y., Lee, W., Lee, Y., Choi, J., Kim, T., Wang, C., Gomez, E.D., Woo, H.Y., and Kim, B.J.: Correlation between phase-separated domain sizes of active layer and photovoltaic performances in all-polymer solar cells. Macromolecules 49, 5051 (2016).Google Scholar
26.Mao, Z.H., Senevirathna, W., Liao, J.Y., Gu, J., Kesava, S.V., Guo, C.H., Gomez, E.D., and Sauve, G.: Azadipyrromethene-based Zn(II) complexes as nonplanar conjugated electron acceptors for organic photovoltaics. Adv. Mater. 26, 6290 (2014).Google Scholar
27.Doerr, A.: Single-particle cryo-electron microscopy. Nat. Methods 13, 23 (2015).Google Scholar
28.Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., and Taheri, M.L.: Direct detection electron energy-loss spectroscopy: a method to push the limits of resolution and sensitivity. Sci. Rep. 7, 8243 (2017).Google Scholar
29.Yakovlev, S., and Libera, M.: Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Micron 39, 734 (2008).Google Scholar
30.Drummy, L.F., Davis, R.J., Moore, D.L., Durstock, M., Vaia, R.A., and Hsu, J.W.P.: Molecular-scale and nanoscale morphology of P3HT:PCBM bulk heterojunctions: energy-filtered TEM and low-dose HREM. Chem. Mater. 23, 907 (2011).Google Scholar
31.Perez, L.A., Rogers, J.T., Brady, M.A., Sun, Y., Welch, G.C., Schmidt, K., Toney, M.F., Jinnai, H., Heeger, A.J., Chabinyc, M.L., Bazan, G.C., and Kramer, E.J.: The role of solvent additive processing in high performance small molecule solar cells. Chem. Mater. 26, 6531 (2014).Google Scholar
Supplementary material: PDF

Kuei et al. supplementary material

Kuei et al. supplementary material 1

Download Kuei et al. supplementary material(PDF)
PDF 2.6 MB