Skip to main content Accessibility help
×
Home

Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes

  • Kuan-Yu Shen (a1), Miklos Lengyel (a1), Louis Wang (a1) and Richard L. Axelbaum (a1)

Abstract

In this study, we investigate spray pyrolysis as an approach to synthesis of tunnel structure sodium manganese oxide, as it is a cost-effective and scalable technology. The powders synthesized with Na/Mn ratio of 0.50 displayed a pure tunnel structure, and demonstrated the best electrochemical performance, with a discharge capacity of 115 mAh/g. The material also showed good cycleability and rate capability. Noticeable decay in performance was seen in materials with Na/Mn ratios other than 0.50, indicating that this material is sensitive to minor compositional deviations. This study has demonstrated that spray pyrolysis is a promising synthesis method for this material.

Copyright

Corresponding author

Address all correspondence to R.L. Axelbaum at axelbaum@wustl.edu

References

Hide All
1. Ellis, B.L. and Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168 (2012).
2. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).
3. Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S.: Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull. 39, 416 (2014).
4. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947 (2013).
5. Sauvage, F., Laffont, L., Tarascon, J.M., and Baudrin, E.: Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2 . Inorg. Chem. 46, 3289 (2007).
6. Hosono, E., Saito, T., Hoshino, J., Okubo, M., Saito, Y., Nishio-Hamane, D., Kudo, T., and Zhou, H.: High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J. Power Sources 217, 43 (2012).
7. Zhao, L.W., Ni, J.F., Wang, H.B. and Gao, L.J.: Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv. 3, 6650 (2013).
8. Wang, Y., Liu, J., Lee, B., Qiao, R., Yang, Z., Xu, S., Yu, X., Gu, L., Hu, Y.-S., Yang, W., Kang, K., Li, H., Yang, X.-Q., Chen, L., and Huang, X.: Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015).
9. Bi, F., Xuan, Z., and Yaping, W.: High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. J. Power Sources 310, 102 (2016).
10. Bai, S.L., Song, J.L., Wen, Y.H., Cheng, J., Cao, G.P., Yang, Y.S., and Li, D.Q.: Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material. RSC Adv. 6, 40793 (2016).
11. Xu, M.W., Niu, Y.B., Chen, C.J., Song, J., Bao, S.J., and Li, C.M.: Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries. RSC Adv. 4, 38140 (2014).
12. Lengyel, M., Elhassid, D., Atlas, G., Moller, W.T., and Axelbaum, R.L.: Development of a scalable spray pyrolysis process for the production of non-hollow battery materials. J. Power Sources 266, 175 (2014).
13. Ogihara, T., Kodera, T., Myoujin, K., and Motohira, S.: Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater. Sci. Eng. B 161, 109 (2009).
14. Hong, Y.J., Kim, J.H., Kim, M.H., and Kang, Y.C.: Electrochemical properties of 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis. Mater. Res. Bull. 47, 2022 (2012).
15. Jung, D.S., Hwang, T.H., Park, S.B., and Choi, J.W.: Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 13, 2092 (2013).
16. Sadeghian, Z.: Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane. New Carbon Mater. 24, 33 (2009).
17. Jung, K.Y., Lee, J.H., Koo, H.Y., Kang, Y.C., and Bin Park, S.: Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni(NO3)2·6H2O precursor: effect of temperature and nickel acetate on the particle morphology. Mater. Sci. Eng. B 137, 10 (2007).
18. Okuyama, K., Abdullah, M., Lenggoro, I.W., and Iskandar, F.: Preparation of functional nanostructured particles by spray drying. Adv. Powder Technol. 17, 587 (2006).
19. Lengyel, M., Atlas, G., Elhassid, D., Luo, P.Y., Zhang, X., Belharouak, I., and Axelbaum, R.L.: Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis. J. Power Sources 262, 286 (2014).
20. Jeong, Y.U. and Manthiram, A.: Synthesis of NaxMnO2+δ by a reduction of aqueous sodium permanganate with sodium iodide. J. Solid State Chem. 156, 331 (2001).
21. Lengyel, M., Shen, K-Y., Lanigan, D.M., Martin, J.M., Zhang, X., and Axelbaum, R.L.: Trace level doping of lithium-rich cathode materials. J. Mater. Chem. A 4, 3538 (2016).

Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes

  • Kuan-Yu Shen (a1), Miklos Lengyel (a1), Louis Wang (a1) and Richard L. Axelbaum (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed