Skip to main content Accessibility help

Self-patterning of graphene-encapsulated gold nanoparticles for surface-enhanced Raman spectroscopy

  • Yuan Li (a1), Kelly Burnham (a2), John Dykes (a3) and Nitin Chopra (a4)


The main challenges of developing advanced surface-enhanced Raman spectroscopy (SERS) sensors lie in the poor reproducibility, low uniformity, and the lack of molecular selectivity. In this paper, we report a facile and cost-effective approach for the large-scale patterning of graphene-encapsulated Au nanoparticles on Si substrate as efficient SERS sensors with highly-improved uniformity, reproducibility, and unique selectivity. The materials production was accomplished via an industry-applicable galvanic deposition—annealing—chemical vapor deposition approach, followed by a final plasma treatment. Our study provides a facile approach to the fabrication of uniform SERS substrate and further prompts the practical progress of SERS-based chemical sensors.


Corresponding author

Address all correspondence to Dr. Nitin Chopra at


Hide All
1. Camden, J.P., Dieringer, J.A., Zhao, J., and Van Duyne, R.P.: Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 41, 1653 (2008).
2. He, Y., Su, S., Xu, T., Zhong, Y., Zapien, J.A., Li, J., and Lee, S.T.: Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6, 122 (2011).
3. Galopin, E., Barbillat, J., Coffinier, Y., Szunerits, S., Patriarche, G., and Boukherroub, R.: Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 1, 1396 (2009).
4. Tian, Z.Q., Ren, B., Li, J.F., and Yang, Z.L.: Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 34, 3514 (2007).
5. Gong, X., Bao, Y., Qiu, C., and Jiang, C.: Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chem. Commun. 48, 7003 (2012).
6. Ko, H., Singamaneni, S., and Tsukruk, V.V.: Nanostructured surfaces and assemblies as SERS media. Small 4, 1576 (2008).
7. Luo, P., Li, C., and Shi, G.: Synthesis of gold@ carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys. 14, 7360 (2012).
8. Gunawidjaja, R., Kharlampieva, E., Choi, I., and Tsukruk, V.V.: Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small 5, 2460 (2009).
9. Halas, N.J., Lal, S., Link, S., Chang, W.S., Natelson, D., Hafner, J.H., and Nordlander, P.: A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv. Mater. 24, 4842 (2012).
10. Li, Y., DiStefano, J.G., Murthy, A.A., Cain, J.D., Hanson, E.D., Li, Q., Castro, F.C., Chen, X., and Dravid, V.P.: Superior plasmonic photodetectors based on Au@ MoS2 core-shell Heterostructures. ACS Nano 11, 10321 (2017).
11. Li, Y., Cain, J.D., Hanson, E.D., Murthy, A.A., Hao, S., Shi, F., Li, Q., Wolverton, C., Chen, X., and Dravid, V.P.: Au@ MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett 16, 7696 (2016).
12. Zheng, Y., Wang, W., Fu, Q., Wu, M., Kamran, S.Y., Wong, K.M., and Lei, Y.: Surface-Enhanced Raman Scattering (SERS) Substrate based on large-area well-defined gold nanoparticle arrays with high SERS uniformity and stability. Chem Plus Chem 79, 1622 (2014).
13. Baik, S.Y., Cho, Y.J., Lim, Y.R., Im, H.S., Jang, D.M., Myung, Y., and Kang, H.S.: Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon–carbon core-shell nanowires. ACS Nano 6, 2459 (2012).
14. Wang, H., Jiang, X., Lee, S.T., and He, Y.: Silicon nanohybrid- based surface-enhanced Raman scattering sensors. Small 10, 4455 (2014).
15. Xu, W., Mao, N., and Zhang, J.: Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9, 1206 (2013).
16. Li, X., Li, J., Zhou, X., Ma, Y., Zheng, Z., Duan, X., and Qu, Y.: Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. Carbon 66, 713 (2014).
17. Xu, W., Ling, X., Xiao, J., Dresselhaus, M.S., Kong, J., Xu, H., and Zhang, J.: Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. 109, 9281 (2012).
18. Li, Y., Shi, W., Gupta, A., and Chopra, N.: Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics. RSC Adv. 5, 49708 (2015).
19. Li, Y., Dykes, J., Gilliam, T., and Chopra, N.: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).
20. Li, Y. and Chopra, N.: Gold nanoparticle integrated with nanostructured carbon and quantum dots: synthesis and optical properties. Gold Bull. 48, 73 (2015).
21. Chopra, N., Wu, J.C., and Summerville, L.: Controlled assembly of graphene shells encapsulated gold nanoparticles and their integration with carbon nanotubes. Carbon 62, 76 (2013).
22. Chopra, N., Bachas, L.G., and Knecht, M.R.: Fabrication and biofunctionalization of carbon-encapsulated Au nanoparticles. Chem. Mater. 21, 1176 (2009).
23. Wu, J., Shi, W., and Chopra, N.: Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth. J. Phys. Chem. C 116, 12861 (2012).
24. Li, Y. and Chopra, N.: Fabrication of nanoscale hetero-structures comprised of graphene-encapsulated gold nanoparticles and semi-conducting quantum dots for photocatalysis. Phys. Chem. Chem. Phys. 17, 12881 (2015).
25. Li, Y. and Chopra, N.: Graphene encapsulated gold nanoparticle-quantum dot heterostructures and their electrochemical characterization. Appl. Surf. Sci. 344, 27 (2015).
26. Li, Y., Shi, W., and Chopra, N.: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2016).
27. Jain, P.K., Lee, K.S., El-Sayed, I.H., and El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).
28. Lee, K.S. and El-Sayed, M.A.: Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220 (2006).
29. Xu, P., Jeon, S.H., Mack, N.H., Doorn, S.K., Williams, D.J., Han, X., and Wang, H.L.: Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale 2, 1436 (2010).
30. Malard, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).
31. Lu, G., Li, H., Liusman, C., Yin, Z., Wu, S., and Zhang, H.: Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2, 1817 (2011).
32. Björk, J., Hanke, F., Palma, C.A., Samori, P., Cecchini, M., and Persson:, M. Adsorption of aromatic and anti-aromatic systems on graphene through π-π stacking. J. Phys. Chem. Lett. 1, 3407 (2010).
33. Yang, S.T., Chen, S., Chang, Y., Cao, A., Liu, Y., and Wang, H.: Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 359, 24 (2011).
Type Description Title
Supplementary materials

Li et al. supplementary material
Li et al. supplementary material 1

 PDF (671 KB)
671 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed