Skip to main content Accessibility help
×
Home

Self-assembly synthesis of AgNPs@g-C3N4 composite with enhanced electrochemical properties for supercapacitors

  • D.F. Wang (a1), Y.Z. Wu (a1), X.H. Yan (a1) (a2) (a3), J.J. Wang (a1), Q. Wang (a1), C. Zhou (a1), X.X. Yuan (a1), J.M. Pan (a1) and X.N. Cheng (a1)...

Abstract

AgNPs@g-C3N4 composite was synthesized from Ag-containing sol and g-C3N4 powder by the ultrasonic-assisted self-assembly method. The composite has hierarchical pore size distributions, which will be beneficial to the ion transport with different size. Ag nanoparticles with the size of 5 nm successfully adhere on the surface of g-C3N4. The AgNPs@g-C3N4 composite has excellent specific capacitance and specific power performance for the supercapacitors as an electrode material. The specific capacitance of composite is 4 times greater than that of g-C3N4. It can be ascribed to the introduction of Ag nanoparticles that the internal resistance of the composite is significantly decreased.

Copyright

Corresponding author

Address all correspondence to Xuehua Yan at xhyan@mail.ujs.edu.cn

References

Hide All
1.Liu, Y., Zhang, B., Wang, F., Wen, Z., and Wu, Y.: Nanostructured intercalation compounds as cathode materials for supercapacitors. Pure Appl. Chem. 86, 593 (2014).
2.Wang, Y., Song, Y., and Xia, Y.: Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925 (2016).
3.Lukatskaya, M.R., Dunn, B., and Gogotsi, Y.: Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).
4.Augustyn, V., Simon, P., and Dunn, P.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).
5.Chang, X., Zhai, X., Sun, S., Gu, D., Dong, L., and Yin, Y.: MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance. Nanotechnology 28, 135705 (2017).
6.Liu, L., Wang, J., Wang, C., and Wang, G.: Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3, composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications. Appl. Surf. Sci. 390, 303 (2016).
7.Liu, Y.: One-pot hydrothermal synthesis of nitrogen-doped hierarchically porous carbon monoliths for supercapacitors. J. Porous Mater. 21, 1009 (2014).
8.Balducci, A., Dugas, R., Taberna, P.L., Simon, P., Plee, D., Mastragostino, M., and Passerini, S.: High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165, 922 (2007).
9.Gamby, J., Taberna, P.L., Simon, P., Fauvarque, J.F., and Chesneau, M.: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2011).
10.Zhang, L.L. and Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).
11.Hu, S., Ouyang, W., Guo, L., Lin, Z., Jiang, X., Qiu, B., and Chen, G.: Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron. 92, 718 (2016).
12.Wu, Y.Z., Chen, M., Yan, X.H., Ren, J., Dai, Y., Wang, J.J., Pan, J.M., Wang, Y.P., and Cheng, X.N.: Hydrothermal synthesis of Fe3O4 nanorods/graphitic C3N4 composite with enhanced supercapacitive performance. Mater. Lett. 198, 114 (2017).
13.Tahir, M., Cao, C., Butt, F.K., Idrees, F., Mahmood, N., Ali, Z., Aslam, I., Tanveer, M., Rizwan, M., and Mahmood, T.: Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. J. Mater. Chem. A 44, 13949 (2013).
14.Chen, Q., Zhao, Y., Huang, X., Chen, N., and Qu, L.: Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J. Mater. Chem. A 3, 6761 (2015).
15.Xia, H., Hong, C., Shi, X., Li, B., Yuan, G., Yao, Q., and Xie, J.: Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors. J. Mater. Chem. A 3, 1216 (2014).
16.Cho, E.C., Chang-Jian, C.W., Lee, K.C., Huang, J.H., Ho, B.C., Liu, R.Z., and Hsiao, Y.S.: Ternary composite based on homogeneous Ni(OH)2, on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chem. Eng. J. 334, 2058 (2018).
17.Sawangphruk, M., Suksomboon, M., Kongsupornsak, K., Khuntilo, J., Srimuk, P., Sanguansak, Y., Klunbud, P., Suktha, P., and Chiochan, P.: High-performance supercapacitors based on silver nanoparticle-polyaniline-graphene nanocomposites coated on flexible carbon fiber paper. J. Mater. Chem. A 1, 9630 (2013).
18.Dhibar, S. and Das, C.K.: Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind. Eng. Chem. Res. 53, 3495 (2014).
19.Guo, Z., Guan, Y., Dai, C., Mu, J., Che, H., Wang, G., Zhang, X., Zhang, Z., and Zhang, X.: Ag/MnO2 nanorod as electrode material for high-performance electrochemical supercapacitors. J. Nanosci. Nanotechnol. 18, 4904 (2018).
20.Chen, M., Dai, Y., Wang, J.J., Wang, Q., Wang, Y.P., Cheng, X.N., and Yan, X.H.: Smart combination of three-dimensional-flower-like MoS2, nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance. J. Alloys Compd 696, 900 (2017).
21.Zhao, Y., Xu, L., Huang, S.Q., Bao, J., Qiu, J.X., Lian, J.B., Xu, L., Huang, Y.P., Xu, Y.G., and Li, H.M.: Facile preparation of TiO2/C3N4, hybrid materials with enhanced capacitive properties for high performance supercapacitors. J. Alloys Compd 702, 178 (2017).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed