Skip to main content Accessibility help

Self-assembly of nanostructures with multiferroic components using nucleic acid linkers

  • Ferman A. Chavez (a1) and Gopalan Srinivasan (a2)


Self-assembly of multiferroic oxide composites by chemical and biochemical methodology is discussed. The approach involves covalently attaching organic functional groups or oligomeric DNA/RNA to the nanoparticles (NPs). The organic functional groups are only reactive toward functional groups located on different NPs. Using oligomeric DNA/RNA, one could program NPs to only interact with particles possessing complementary DNA/RNA. We have applied both concepts to the assembly of nanostructures with ferrites for the ferromagnetic phase and barium titanate for the ferroelectric phase. The assembled core–shell particles and superstructures obtained in a magnetic field show evidence for strong interactions between the magnetic and ferroelectric subsystems.


Corresponding author

Address all correspondences to either F. A. Chavez at or G. Srinivasan at


Hide All
1. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., and Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2 (2012).
2. Xu, L.G., Ma, W., Wang, L.B., Xu, C.L., Kuang, H., and Kotov, N.A.: Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chem. Soc. Rev. 42, 3114 (2013).
3. Pershina, A.G., Sazonov, A.E., and Filimonov, V.D.: Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems. Russ. Chem. Rev. 83, 299 (2014).
4. Bao, N.Z. and Gupta, A.: Self-assembly of superparamagnetic nanoparticles. J. Mater. Res. 26, 111 (2011).
5. Barrow, S.J., Funston, A.M., Wei, X.Z., and Mulvaney, P.: DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 8, 138 (2013).
6. Huang, M.H. and Thoka, S.: Formation of supercrystals through self-assembly of polyhedral nanocrystals. Nano Today 10, 81 (2015).
7. Li, H.Y., Carter, J.D., and LaBean, T.H.: Nanofabrication by DNA self-assembly. Mater. Today 12, 24 (2009).
8. Tan, L.H., Xing, H., and Lu, Y.: DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 47, 1881 (2014).
9. Schroeder, A., Heller, D.A., Winslow, M.M., Dahlman, J.E., Pratt, G.W., Langer, R., Jacks, T., and Anderson, D.G.: Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39 (2012).
10. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl. Phys. 103, 031101 (2008).
11. Sun, N.X. and Srinivasan, G.: Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02, 124004 (2012).
12. Schileo, G.: Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Progr. Solid State Chem. 41, 87 (2013).
13. Bai, F.M., Zhang, H.W., Li, J.F., and Viehland, D.: Magnetic and magnetoelectric properties of as-deposited and annealed BaTiO3–CoFe2O4 nanocomposite thin films. J. Phys. D: Appl. Phys. 43, 285002 (2010).
14. Brosseau, C., Castel, V., and Potel, M.: Controlled extrinsic magnetoelectric coupling in BaTiO3/Ni nanocomposites: effect of compaction pressure on interfacial anisotropy. J. Appl. Phys. 108, 024306 (2010).
15. Wang, H.M., Pan, E., and Chen, W.Q.: Large multiple resonance of magnetoelectric effect in a multiferroic composite cylinder with an imperfect interface. Phys. Status Solidi B 248, 2180 (2011).
16. Sreenivasulu, G., Popov, M., Chavez, F.A., Hamilton, S.L., Lehto, P.R., and Srinivasan, G.: Controlled self-assembly of multiferroic core–shell nanoparticles exhibiting strong magneto-electric effects. Appl. Phys. Lett. 104, 052901 (2014).
17. Popov, M., Sreenivasulu, G., Petrov, V.M., Chavez, F.A., and Srinivasan, G.: High frequency magneto-dielectric effects in self-assembled ferrite–ferroelectric core–shell nanoparticles. AIP Adv. 4, 097117 (2014).
18. Sreenivasulu, G., Petrov, V.M., Chavez, F.A., and Srinivasan, G.: Superstructures of self-assembled multiferroic core–shell nanoparticles and studies on magneto-electric interactions. Appl. Phys. Lett. 105, 072905 (2014).
19. Srinivasan, G., Popov, M., Sreenivasulu, G., Petrov, V.M., and Chavez, F.A.: Millimeter-wave magneto-dielectric effects in self-assembled ferrite–ferroelectric core–shell nanoparticles. J. Appl. Phys. 117, 17A309 (2015).
20. Srinivasan, G., Sreenivasulu, G., Benoit, C., Petrov, V.M., and Chavez, F.: Magnetic field directed assembly of superstructures of ferrite-ferroelectric core–shell nanoparticles and studies on magneto-electric interactions. J. Appl. Phys. 117, 17B904 (2015).
21. Guo, Y., Hu, Y., and Deng, Z.T.: DNA directed self-assembly of fluorescent colloidal semiconductor quantum dots and plasmonic metal nanoparticles heterogeneous nanomaterials. Chin. J. Chem. 34, 259 (2016).
22. Ma, Y.R., Yang, X.D., Wei, Y.R., and Yuan, Q.: Applications of DNA nanotechnology in synthesis and assembly of inorganic nanomaterials. Chin. J. Chem. 34, 291 (2016).
23. Ravan, H., Kashanian, S., Sanadgol, N., Badoei-Dalfard, A., and Karami, Z.: Strategies for optimizing DNA hybridization on surfaces. Anal. Biochem. 444, 41 (2014).
24. Li, L.L., Wu, P.W., Hwang, K., and Lu, Y.: An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411 (2013).
25. Kumar, A., Hwang, J.H., Kumar, S., and Nam, J.M.: Tuning and assembling metal nanostructures with DNA. Chem. Commun. (Camb.) 49, 2597 (2013).
26. Banchelli, M., Nappini, S., Montis, C., Bonini, M., Canton, P., Berti, D., and Baglioni, P.: Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 16, 10023 (2014).
27. Robinson, I., Tung le, D., Maenosono, S., Walti, C., and Thanh, N.T.: Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2, 2624 (2010).
28. Pita, M., Abad, J.M., Vaz-Dominguez, C., Briones, C., Mateo-Marti, E., Martin-Gago, J.A., Morales Mdel, P., and Fernandez, V.M.: Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321, 484 (2008).
29. Kitamura, N., Nakai, R., Kohda, H., Furuta-Okamoto, K., and Iwata, H.: Labeling of islet cells with iron oxide nanoparticles through DNA hybridization for highly sensitive detection by MRI. Bioorgan. Med. Chem. 21, 7175 (2013).
30. Shen, H., Wang, Y., Yang, H., and Jiang, J.: Covalent immobilization of oligo-DNA on the surface of magnetic nanoparticles and surface-enhanced Raman scattering study. Chin. Sci. Bull. 48, 2698 (2003).
31. Wang, F., Shen, H., Feng, J., and Yang, H.: PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim. Acta 153, 15 (2006).
32. Santra, S., Yapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W.: Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17, 2900 (2001).
33. Zhu, N., Zhang, A., He, P., and Fang, Y.: DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16, 1925 (2004).
34. Medley, C.D., Smith, J.E., Wigman, L.S., and Chetwyn, N.P.: A DNA-conjugated magnetic nanoparticle assay for assessing genotoxicity. Anal Bioanal. Chem 404, 2233 (2012).
35. Wagner, K., Kautz, A., Röder, M., Schwalbe, M., Pachmann, K., Clement, J.H., and Schnabelrauch, M.: Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake. Appl. Organometal. Chem. 18, 514 (2004).
36. Zhu, X., Zhou, X., and Xing, D.: Nano-magnetic primer based electrochemiluminescence-polymerase chain reaction (NMPE-PCR) assay. Biosens. Bioelectron. 31, 463 (2012).
37. Robinson, D.B., Persson, H.H., Zeng, H., Li, G., Pourmand, N., Sun, S., and Wang, S.X.: DNA-functionalized MFe2O4 (M = Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. Langmuir 21, 3096 (2005).
38. Yin, M., Li, Z., Liu, Z., Ren, J., Yang, X., and Qu, X.: Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem. Commun. 48, 6556 (2012).
39. Fuentes, M., Mateo, C., Rodriguez, A., Casqueiro, M., Tercero, J.C., Riese, H.H., Fernandez-Lafuente, R., and Guisan, J.M.: Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosens. Bioelectron. 21, 1574 (2006).
40. Amagliani, G., Omiccioli, E., Campo, A., Bruce, I.J., Brandi, G., and Magnani, M.: Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J. Appl. Microbiol. 100, 375 (2006).
41. Lin, J.Y. and Chen, Y.C.: Functional magnetic nanoparticle-based trapping and sensing approaches for label-free fluorescence detection of DNA. Talanta 86, 200 (2011).
42. del Campo, A., Sena, T., Lellouchec, J.-P., and Brucea, I.J.: Multifunctional magnetite and silica–magnetite nanoparticles: synthesis, surface activation and applications in life sciences. J. Magn. Magn. Mater. 293, 33 (2005).
43. Nie, L.B., Wang, X.L., Li, S., and Chen, H.: Amplification of fluorescence detection of DNA based on magnetic separation. Anal. Sci. 25, 1327 (2009).
44. Josephson, L., Perez, J.M., and Weissleder, R.: Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. Engl. 40, 3204 (2001).
45. Yigit, M.V., Mazumdar, D., Kim, H.K., Lee, J.H., Odintsov, B., and Lu, Y.: Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem.: Eur. J. Chem. Biol. 8, 1675 (2007).
46. Grimm, J., Perez, J.M., Josephson, L., and Weissleder, R.: Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64, 639 (2004).
47. Osterberg, F.W., Rizzi, G., Zardan Gomez de la Torre, T., Stromberg, M., Stromme, M., Svedlindh, P., and Hansen, M.F.: Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors. Biosens. Bioelectron. 40, 147 (2013).
48. Park, S.Y., Lytton-Jean, A.K., Lee, B., Weigand, S., Schatz, G.C., and Mirkin, C.A.: DNA-programmable nanoparticle crystallization. Nature 451, 553 (2008).
49. Macfarlane, R.J., Jones, M.R., Senesi, A.J., Young, K.L., Lee, B., Wu, J., and Mirkin, C.A.: Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. Engl. 49, 4589 (2010).
50. Lu, F., Yager, K.G., Zhang, Y.G., Xin, H.L., and Gang, O.: Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).
51. Seo, S.E., Wang, M.X., Shade, C.M., Rouge, J.L., Brown, K.A., and Mirkin, C.A.: Modulating the bond strength of DNA–nanoparticle superlattices. ACS Nano 10, 1771 (2016).
52. Cutler, J.I., Zheng, D., Xu, X., Giljohann, D.A., and Mirkin, C.A.: Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett. 10, 1477 (2010).
53. Thomson, D.A., Tee, E.H., Tran, N.T., Monteiro, M.J., and Cooper, M.A.: Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA. Biomacromolecules 13, 1981 (2012).
54. Kaittanis, C., Boukhriss, H., Santra, S., Naser, S.A., and Perez, J.M.: Rapid and sensitive detection of an intracellular pathogen in human peripheral leukocytes with hybridizing magnetic relaxation nanosensors. PLoS ONE 7, e35326 (2012).
55. Sreenivasulu, G., Lochbiler, T.A., Panda, M., Srinivasan, G., and Chavez, F.A.: Self-assembly of multiferroic core–shell particulate nanocomposites through DNA–DNA hybridization and magnetic field directed assembly of superstructures. AIP Adv. 6, 045202 (2016).
56. Shukla, G.C., Haque, F., Tor, Y., Wilhelmsson, L.M., Toulme, J.J., Isambert, H., Guo, P., Rossi, J.J., Tenenbaum, S.A., and Shapiro, B.A.: A boost for the emerging field of RNA nanotechnology. ACS Nano 5, 3405 (2011).
57. Grabow, W.W. and Jaeger, L.: RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871 (2014).
58. Sharma, A., Haque, F., Pi, F., Shlyakhtenko, L.S., Evers, B.M., and Guo, P.: Controllable self-assembly of RNA dendrimers. Nanomed.: Nanotechnol. Biol. Med. 12, 835 (2016).
59. Carter, C.J., Dolska, M., Owczarek, A., Ackerson, C.J., Eaton, B.E., and Feldheim, D.L.: In vitro selection of RNA sequences capable of mediating the formation of iron oxide nanoparticles. J. Mater. Chem. 19, 8320 (2009).
60. Liu, J., Guo, S.C., Cinier, M., Shlyakhtenko, L.S., Shu, Y., Chen, C.P., Shen, G., and Guo, P.X.: Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5, 237 (2011).
61. Afonin, K.A., Bindewald, E., Yaghoubian, A.J., Voss, N., Jacovetty, E., Shapiro, B.A., and Jaeger, L.: In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676 (2010).
62. Grabow, W.W., Zakrevsky, P., Afonin, K.A., Chworos, A., Shapiro, B.A., and Jaeger, L.: Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett. 11, 878 (2011).
63. Markham, N.R. and Zuker, M.: UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3 (2008).
64. Matveeva, O.V., Kang, Y., Spiridonov, A.N., Saetrom, P., Nemtsov, V.A., Ogurtsov, A.Y., Nechipurenko, Y.D., and Shabalina, S.A.: Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS ONE 5, e10180 (2010).
65. Wang, D. and Ko, H.H.: Magnetic-assisted self-assembly of rectangular shaped parts. Sens. Actuators 151, 195 (2009).
66. Smoukov, S.K., Gangwal, S., Marquez, M., and Velev, O.D.: Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter. 5, 1285 (2009).
67. Zhang, J.X., Dai, J.Y., Chow, C.K., Sun, C.L., Lo, V.C., and Chan, H.L.W.: CoFe2O4∕SrRuO3∕Pb(Zr0.52 Ti0.48)O3CoFe2O4∕SrRuO3∕Pb(Zr0.52 Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 92, 022901 (2008).
68. Zhang, J.X., Dai, J.Y., Lu, W., and Chan, H.L.W.: Room temperature magnetic exchange coupling in multiferroic BaTiO3/CoFe2O4 magnetoelectric superlattice. J. Mater. Res. 44, 5143 (2009).
69. Liu, R., Zhao, Y., Huang, R., Zhao, Y., and Zhou, H.: Multiferroic ferrite/perovskite oxide core/shell nanostructures. J. Mater. Chem. 20, 10665 (2010).
70. Raidongia, K., Nag, A., Sundaresan, A., and Rao, C.N.R.: Multiferroic and magnetoelectric properties of core–shell CoFe2O4–BaTiO3 nanocomposites. Appl. Phys. Lett. 97, 062904 (2010).

Self-assembly of nanostructures with multiferroic components using nucleic acid linkers

  • Ferman A. Chavez (a1) and Gopalan Srinivasan (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed