Skip to main content Accessibility help
×
Home

Salt-templated platinum–palladium porous macrobeam synthesis

  • Fred. J. Burpo (a1), Enoch A. Nagelli (a1), Alexander N. Mitropoulos (a2), Stephen F. Bartolucci (a3), Joshua P. McClure (a4), David R. Baker (a4), Anchor R. Losch (a1) and Deryn D. Chu (a5)...

Abstract

Here we present the synthesis of porous platinum–palladium macrobeams templated from high aspect ratio Magnus’ salt needle derivatives. The combination of [PtCl4]2− and/or [PdCl4]2− with [Pt(NH3)4]2+ ions results in salt needles ranging from 15 to 300 µm in length. Electrochemical reduction of the salt templates results in porous macrobeams with a square cross-section. Porous side wall texture and elemental composition was controlled with initial platinum to palladium salt ratio. Macrobeam free-standing films exhibited a specific capacitance up to 11.73 F/g and a solvent accessible surface area of 26.6 m2/g. These salt-templated porous platinum–palladium macrobeams offer a promising material for fuel cell catalysis.

Copyright

Corresponding author

Address all correspondence to Fred J. Burpo at john.burpo@usma.edu

Footnotes

Hide All
*

These authors contributed equally.

Footnotes

References

Hide All
1.Jiang, B., Kani, K., Iqbal, M., Abe, H., Kimura, T., Hossain, M.S.A., Anjaneyulu, O., Henzie, J., and Yamauchi, Y.: Mesoporous bimetallic RhCu alloy nanospheres using a sophisticated soft-templating strategy. Chem. Mater. 30, 428 (2018).
2.Qiu, X., Dai, Y., Zhu, X., Zhang, H., Wu, P., Tang, Y., and Wei, S.: Template-engaged synthesis of hollow porous platinum–palladium alloy nanospheres for efficient methanol electro-oxidation. J. Power Sources 302, 195 (2016).
3.Liu, L., Pippel, E., Scholz, R., and Gösele, U.: Nanoporous Pt−Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett. 9, 4352 (2009).
4.Xu, C., Zhang, Y., Wang, L., Xu, L., Bian, X., Ma, H., and Ding, Y.: Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem. Mater. 21, 3110 (2009).
5.Yamauchi, Y., Tonegawa, A., Komatsu, M., Wang, H., Wang, L., Nemoto, Y., Suzuki, N., and Kuroda, K.: Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 134, 5100 (2012).
6.Victor, M., Hamed, A.E., Hongjing, W., Bo, J., Cuiling, L., W.K. C.W., Ho, K.J., and Yusuke, Y.: Nanoarchitectures for mesoporous metals. Adv. Mater. 28, 993 (2016).
7.Peng, Z. and Yang, H.: Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano. Today. 4, 143 (2009).
8.Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Marković, N.M.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).
9.Burpo, F.J., Nagelli, E.A., Morris, L.A., McClure, J.P., Ryu, M.Y., and Palmer, J.L.: Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. J. Mater. Res. 32, 4153 (2017).
10.Ding, L.X., Wang, A.L., Li, G.R., Liu, Z.Q., Zhao, W.X., Su, C.Y., and Tong, Y.X.: Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 134, 5730 (2012).
11.Eid, K., Wang, H., He, P., Wang, K., Ahamad, T., Alshehri, S.M., Yamauchi, Y., and Wang, L.: One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 7, 16860 (2015).
12.Shih, Z.Y., Wang, C.W., Xu, G., and Chang, H.T.: Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013).
13.Zhang, H., Jin, M., and Xia, Y.: Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035 (2012).
14.Wu, J., Li, P., Pan, Y.T., Warren, S., Yin, X., and Yang, H.: Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066 (2012).
15.Zhongwei, C., Mahesh, W., Wenzhen, L., and Yushan, Y.: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060 (2007).
16.Li, S.S., Zheng, J.N., Wang, A.J., Tao, F.L., Feng, J.J., Chen, J.R., and Yu, H.: Branched platinum-on-palladium bimetallic heteronanostructures supported on reduced graphene oxide for highly efficient oxygen reduction reaction. J. Power Sources 272, 1078 (2014).
17.Winjobi, O., Zhang, Z., Liang, C., and Li, W.: Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim. Acta 55, 4217 (2010).
18.Vauquelin, N.L.: Memoire sur le palladium et le rhodium. Ann. Chim. 88, 167 (1813).
19.Burpo, F.J., Nagelli, E.A., Winter, S.J., McClure, J.P., Bartolucci, S.F., Burns, A.R., O'Brien, S.F., and Chu, D.D.: Salt-templated hierarchically porous platinum macrotube synthesis. Chem. Select. 3, 4542 (2018).
20.Xiao, X., Song, H., Lin, S., Zhou, Y., Zhan, X., Hu, Z., Zhang, Q., Sun, J., Yang, B., Li, T., Jiao, L., Zhou, J., Tang, J., and Gogotsi, Y.: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016).
21.Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Li, T., Wu, J., Huang, L., Gogotsi, Y., and Zhou, J.: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180 (2017).
22.Magnus, G.: Ueber einige Verbindungen des Platinchlorürs. Ann. Phys. 90, 239 (1828).
23.Schneider, C.A., Rasband, W.S., and Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).
24.Bremi, J., Brovelli, D., Caseri, W., Hähner, G., Smith, P., and Tervoort, T.: From Vauquelin's and Magnus’ salts to gels, uniaxially oriented films, and fibers: synthesis, characterization, and properties of tetrakis(1-aminoalkane)metal(II) tetrachlorometalates(II). Chem. Mater. 11, 977 (1999).
25.Zhou, W.P., Lewera, A., Larsen, R., Masel, R.I., Bagus, P.S., and Wieckowski, A.: Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110, 13393 (2006).
26.R. de Levie: On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 9, 1231 (1964).
27.Lukaszewski, M.: Electrochemical methods of real surface area determination of noble metal electrodes––an overview. Int. J. Electrochem. Sci. 11, 4442 (2016).
28.Biegler, T., Rand, D.A.J., and Woods, R.: Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J. Electroanal. Chem. 29, 269 (1971).
29.Fu, G., Wu, K., Lin, J., Tang, Y., Chen, Y., Zhou, Y., and Lu, T.: One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 117, 9826 (2013).
30.Hien, H.V., Thanh, T.D., Chuong, N.D., Hui, D., Kim, N.H., and Lee, J.H.: Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation. Composites Part B 143, 96 (2018).
Type Description Title
PDF
Supplementary materials

Burpo et al. supplementary material
Figures S1-S8 and Tables S1-S2

 PDF (3.7 MB)
3.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed