Skip to main content Accessibility help
×
Home

The role of phase changes in maintaining pore structure on thermal exposure of aluminosilicate aerogels

  • Frances I. Hurwitz (a1), Richard B. Rogers (a1), Haiquan Guo (a2), Kevin Yu (a3), Jennifer Domanowski (a3), Eric Schmid (a3) and Meredith G. Fields (a3)...

Abstract

A variety of applications from insulation to catalytic supports can benefit from lightweight, high surface area, mesoporous materials, which maintain their mesoporous structure to temperatures of 900–1200 °C. Silica aerogels begin to densify by 700 °C. Alumina aerogels are capable of higher temperature exposure than their silica counterparts, but undergo successive phase transformations to form transitional aluminas prior densifying to α-alumina. The present study characterizes the phase transitions of aluminosilicate aerogels derived from Boehmite powders to elucidate the role of time and temperature on phase transitions, surface area, and morphology. Aerogel compositions stable to 1200 °C for periods of 24 h have been demonstrated.

Copyright

Corresponding author

Address all correspondence to F. I. Hurwitz at frances.hurwitz@nasa.gov

References

Hide All
1.Mizushima, Y. and Hori, M.: Preparation of heat-resistant alumina aerogels. J. Mater. Res. 8, 29932999 (1993).
2.Kayser, S., Shter, G., de Hazan, Y., Cohen, Y., and Grader, G.S.: Heat treatment of alumina aerogels. Chem. Mater. 9, 24642467 (1997).
3.Pecharromán, C., Sobrados, I., Iglesias, J.E., González-Correño, T., and Sanz, J.: Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. J. Phys. Chem. B 103, 61606170 (1999).
4.Horiuchi, T., Osaki, T., Sugiyama, T., Suzuki, K., and Mori, T.: Maintenance of large surface arrea of alumina heated at elevated temperatures above 1300 °C by preparing silica-containing pseudoboehmite aerogel. J. Non-Cryst. Solids 291, 187198 (2001).
5.Yoldas, B.E.: Alumina sol preparation from alkoxides. Am. Ceram. Soc. Bull. 54, 289290 (1975).
6.Yoldas, B.E.: Alumina gels from porous transparent Al2O3. J. Mater. Sci. 10, 18561860 (1975).
7.Pierre, A.C., Elaloui, E., and Pajonk, G.M.: Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir 14, 6673 (1998).
8.Popa, A.F., Rossignol, S., and Kappenstein, C.: Influence of drying technique on silicon insertion into c-alumina and consequences for the homogeneity and thermal stability of silica–alumina aquagels. J. Mater. Chem. 12, 28662868 (2002).
9.Hurwitz, F.I., Gallagher, M., Olin, T.C., Shave, M.K., Ittes, M.I., Olafson, K.N., Fields, M.G., Rogers, R.B., and Guo, H.: Optimization of alumina and aluminosilicate aerogel structure for high temperature performance. Int. J. Appl. Glass Sci. 5, 276286 (2014).
10.Hurwitz, F.I., Guo, H., Rogers, R.B., Sheets, E.J., Miller, D.R., Newlin, K.N., Shave, M.K., Palczer, A.R., and Cox, M.T.: Influence of Ti addition on Boehmite-derived aluminum silicate aerogels: structure and properties. J. Sol-Gel Sci. Technol. 64, 756764 (2012).
11.Brühne, S., Gottleib, S., Assmus, W., Alig, E., and Schmidt, M.U.: Atomic structure analysis of nanocrystalline boehmite AlO(OH). Cryst. Growth Des. 8, 489493 (2008).
12.Klug, F.J., Prochazka, S., and Doremus, H.: Alumina-silica phase diagram in mullite region. J. Am. Ceram. Soc. 70, 750759 (1987).
13.Aravind, P.R., Munkundan, P., Pillai, O.K., and Warrier, K.G.K.: Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid sol-gel route followed by subcritical drying. Microporous Mesoporous Mater. 96, 1420 (2004).
14.Chen, X.Y., Huh, H.S., and Lee, S.W.: Hydrothermal synthesis of Boehmite (γ-AlOOH) nanoplatelets and nanowires: pH controlled morphologies. Nanotechnology 18, 285608 (2007).
15.Voll, D. and Beran, A.: Dehydration process and structural development of cordierite ceramic precursors derived from FTIR spectroscopic investigations. Phys. Chem. Miner. 29, 545551 (2002).
16.Voll, D., Lengauer, C., Berani, A., and Schneider, H.: Infrared band assignment and structural refinement of Al–Si, Al–Ge, and Ga–Ge mullites. Eur. J. Mineral. 13, 591604 (2001).
17.MacKenzie, K.J.D.: Infrared frequency calculations for ideal mullite (3Al2O3·2SiO2). J. Am. Ceram. Soc. 55, 6871 (1972).
18.Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., and Huntz, A.M.: Transition alumina phasses induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 182, 11711176 (2009).
19.Sinkó, K., Mezei, R., Rohonczy, J., and Fratzl, P.: Gel structures containing Al(III). Langmuir 15, 66316636 (1999).
20.Krodikis, X., Raybaud, P., Gobichon, A.-E., Rebours, B., Euzen, P., and Toulhoat, H.: Theoretical study of the dehydration process of boehmite to γ-alumina. J. Phys. Chem. B 105, 51215130 (2001).
21.Pakharukova, V.P., Shalygin, A.S., Gerasimov, E.Y., Tsybulya, S.V., and Martyanov, O.N.: Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment. J. Solid State Chem. 233, 294302 (2016).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed