Skip to main content Accessibility help

Robust resistive switching performance of pulsed laser deposited SiC/Ag/SiC tri-layer thin films deposited on a glass substrate

  • Koppole Kamakshi (a1), J.P.B. Silva (a2), N.S. Kiran Kumar (a3), K.C. Sekhar (a3) and M. Pereira (a2)...


In this work, the authors developed SiC(10 nm)/Ag/SiC(10 nm) thin films showing an electroforming-free resistive switching (RS) effect with a switching ratio of 102. The observed RS effect is attributed to charging and discharging of Ag nanoparticles in the film layer. Further, SiC/Ag/SiC film shows an excellent endurance and retention as well as a good thermal stability of RS characteristics. It is also identified that the switching ratio is invariant but the switching voltage of the device greatly depends on the Ag nanoparticles concentration and the operation temperature of the device. Therefore, SiC/Ag/SiC thin films are attractive for next-generation memory devices with enhanced durability.


Corresponding author

Address all correspondence to K.C. Sekhar at


Hide All
1.Brewer, J.E. and Gill, M.: Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices (John Wiley & Sons, New York, 2010).
2.Chiu, F.C., Shih, W.C., and Feng, J.J.: Conduction mechanism of resistive switching films in MgO memory devices. J. Appl. Phys. 111, 094104 (2012).
3.Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11, 28 (2008).
4.Waser, R., Dittmann, R., Staikov, G., and Szot, K.: Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).
5.Lin, C.C., Lin, C.Y., Lin, M.H., Lin, C.H., and Tseng, T.Y.: Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films. IEEE Trans. Electron Devices 54, 3146 (2007).
6.Ielmini, D., Nardi, F., and Cagli, C.: Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 3246 (2011).
7.Chen, C., Yang, Y.C., Zeng, F., and Pan, F.: Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 97, 083502 (2010).
8.Ekström, M.: SiC CMOS and memory devices for high-temperature integrated circuits. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019.
9.Lee, W., Park, J., Son, M., Lee, J., Jung, S., Kim, S., Park, S., Shin, J., and Hwang, H.: Excellent state stability of Cu/SiC/Pt programmable metallization cells for nonvolatile memory applications. IEEE Electron Device Lett. 32, 680 (2011).
10.Zhong, L., Reed, P.A., Huang, R., De Groot, C.H., and Jiang, L.: Amorphous SiC based non-volatile resistive memories with ultrahigh ON/OFF ratios. Microelectron. Eng. 119, 6164 (2014).
11.Zhong, L., Jiang, L., Huang, R., and De Groot, C.H.: Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices. Appl. Phys. Lett. 104, 093507 (2014).
12.Morgan, K.A., Fan, J., Huang, R., Zhong, L., Gowers, R., Ou, J.Y., Jiang, L., and De Groot, C.H.: Active counter electrode in a SiC electrochemical metallization memory. J. Phys. D Appl. Phys. 50, 325102 (2017).
13.Singh, N., Singh, K., and Kaur, D.: Bipolar resistive switching characteristics of silicon carbide nitride (SiCN)-based devices for nonvolatile memory applications. Ceram. Int. 43, 89708974 (2017).
14.Fan, J., Jiang, L., Wang, S., Huang, R., Morgan, K.A., Zhong, L., and Groot, C.H.: Amorphous SiC resistive memory with embedded Cu nanoparticles. Microelectron. Eng. 174, 15 (2017).
15.Kamakshi, K., Sekhar, K.C., Almeida, A., Agostinho Moreira, J., and Gomes, M.J.M.: Surface plasmon resonance-coupled photoluminescence and resistive switching behavior of pulsed laser-deposited Ag:SiC nanocermet thin films. Plasmonics 10, 1211 (2015).
16.Manifacier, J.C., Gasiot, J., and Fillard, J.P.: A simple method for the determination of optical constants n, k and the thickness of a weakly absorbing thin film. J. Phy. E Sci. Instrum. 9, 1002 (1976).
17.Zou, X., Ong, H.G., You, L., Chen, W., Ding, H., Funakubo, H., Chen, L., and Wang, J.: Charge trapping-detrapping induced resistive switching in Ba0.7Sr0.3TiO3. AIP Adv. 2, 032166 (2012).
18.Fang, Y.C., Li, X.X., Blinn, K., Mahmoud, M.A., Liu, M.L., and Vac, J.: Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering. Sci. Technol. A 30, 050606 (2012).
19.Weimer, W.A. and Dyer, M.J.: Tunable surface plasmon resonance silver films. Appl. Phys. Lett. 79, 19 (2001).
20.Wang, X., Li, M., Meng, L., Lin, K., Feng, J., Huang, T., Yang, Z., and Ren, B.: Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8, 528536 (2014).
21.Sun, H., Liu, Q., Long, S., Lv, H., Banerjee, W., and Liu, M.: Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 116, 154509 (2014).
22.Berciaud, S., Cognet, L., Tamarat, P., and Lounis, B.: Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano. Lett. 5, 515 (2005).
23.Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A., Stewart, D.R., Lau, C.N., and Williams, R.S.: The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).
24.Verrelli, E., Tsoukalas, D., Normand, P., Kean, A.H., and Boukos, N.: Forming-free resistive switching memories based on titanium-oxide nanoparticles fabricated at room temperature. Appl. Phys. Lett. 102, 022909 (2013).
25.Silva, J.P.B., Kamakshi, K., Sekhar, K.C., Queirós, E.C., Agostinho Moreira, J., Almeida, A., Pereira, M., Tavares, P.B., and Gomes, M.J.M.: Resistive switching in ferroelectric lead-free 0.5Ba (Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films. J. Phys. D Appl. Phys. 49, 335301 (2016).
26.Sekhar, K.C., Kamakshi, K., Bernstorff, S., and Gomes, M.J.M.: Effect of annealing temperature on photoluminescence and resistive switching characteristics of ZnO/Al2O3 multilayer nanostructures. J. Alloys Compd. 619, 248252 (2015).
27.Shin, J.W., Kim, S.H., and Cho, W.J.: Investigation on resistive switching characteristics of SiC and HfOx stacked nonvoltaile memory by microwave irradiation. Semicond. Sci. Technol. 34, 095006 (2019).
28.Gogurla, N., Mondal, S.P., Sinha, A.K., Katiyar, A.K., Banerjee, W., Kundu, S.C., and Ray, S.K.: Transparent and flexible resisitve switching memory device with a very high On/OFF ratio using gold nanoparticles embedded in a silk protein matrix. Nanotechnology 24, 345202 (2013).
29.Kao, K.C. and Huang, W.: Electrical Transport in Solids (Pergamon, Oxford, 1981) p. 150.

Robust resistive switching performance of pulsed laser deposited SiC/Ag/SiC tri-layer thin films deposited on a glass substrate

  • Koppole Kamakshi (a1), J.P.B. Silva (a2), N.S. Kiran Kumar (a3), K.C. Sekhar (a3) and M. Pereira (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.