Skip to main content Accessibility help
×
Home

Review and perspective on ferroelectric HfO2-based thin films for memory applications

  • Min Hyuk Park (a1) (a2), Young Hwan Lee (a3), Thomas Mikolajick (a1) (a4), Uwe Schroeder (a1) and Cheol Seong Hwang (a3)...

Abstract

The ferroelectricity in fluorite-structure oxides such as hafnia and zirconia has attracted increasing interest since 2011. They have various advantages such as Si-based complementary metal oxide semiconductor-compatibility, matured deposition techniques, a low dielectric constant and the resulting decreased depolarization field, and stronger resistance to hydrogen annealing. However, the wake-up effect, imprint, and insufficient endurance are remaining reliability issues. Therefore, this paper reviews two major aspects: the advantages of fluorite-structure ferroelectrics for memory applications are reviewed from a material's point of view, and the critical issues of wake-up effect and insufficient endurance are examined, and potential solutions are subsequently discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review and perspective on ferroelectric HfO2-based thin films for memory applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review and perspective on ferroelectric HfO2-based thin films for memory applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review and perspective on ferroelectric HfO2-based thin films for memory applications
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to Uwe Schroeder at Uwe.Schroeder@namlab.com, Cheol Seong Hwang at cheolsh@snu.ac.kr

References

Hide All
1.Böscke, T.S., Müller, J., Bräuhaus, D., Schröder, U., and Böttger, U.: Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).
2.Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C.S.: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811 (2015).
3.Mikolajick, T., Slesazeck, S., Park, M.H., and Schroeder, U.: Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43, 340 (2018).
4.Müller, J., Polakowski, P., Mueller, S., and Mikolajick, T.: Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS. J. Solid State Sci. Technol. 4, N30 (2015).
5.Hwang, C.S.: Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).
6.Schroeder, U., Yurchuk, E., Müller, J., Martin, D., Schenk, T., Polakowski, P., Adelmann, C., Popovici, M.I., Kalinin, S.V., and Mikolajick, T.: Impact of different dopants on the switching properties of ferroelectric hafnium oxide. Jpn. J. Appl. Phys. 53, 08LE02 (2014).
7.Müller, J., Yurchuk, E., Schlösser, T., Paul, J., Hoffmann, R., Mueller, S., Martin, D., Slesazeck, S., Polakowski, P., Sundqvist, J., Czernohorsky, M., Seidel, K., Kücher, P., Boschke, R., Trentzsch, M., Gebauer, K., Schröder, U., and Mikolajick, T.: Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. VLSI Technology (VLSIT), 2012 Symposium on, 2012; pp. 2526.
8.Pešić, M., Knebel, S., Hoffmann, M., Richter, C., Mikolajick, T., and Schroeder, U.: How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories. Electron Devices Meeting (IEDM), 2016 IEEE International, 2016; pp. 11.6.111.6.4.
9.Müller, J., Böscke, T.S., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., Martin, D., Schenk, T., Khüllar, K., Kersch, A., Weinreich, W., Riedel, S., Seidel, K., Kumar, A., Arruda, T.M., Kalinin, S.V., Schlösser, T., Böschke, R., van Bentum, R., Schröder, U., and Mikolajick, T.: Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. Electron Devices Meeting (IEDM), 2013 IEEE International, 2013; pp. 10.8.110.8.4.
10.Mulaosmanovic, H., Slesazeck, S., Ocker, J., Pešić, M., Muller, S., Flachowsky, S., Müller, J., Polakowski, P., Paul, J., Jansen, S., Kolodinski, S., Richter, C., Piontek, S., Schenk, T., Kersch, A., Kuenneth, C., van Bentum, R., Schroder, U., and Mikolajick, T.: Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. Electron Devices Meeting (IEDM), 2015 IEEE International, 2015; pp. 26.8.126.8.3.
11.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., and Hwang, C.S.: Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films. Nano Energy 12, 131 (2015).
12.Hoffmann, M., Schroeder, U., Künneth, C., Kersch, A., Starschich, S., Böttger, U., and Mikolajick, T.: Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154 (2015).
13.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., and Hwang, C.S.: Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).
14.Kim, K.D., Lee, Y.H., Gwon, T., Kim, Y.J., Kim, H.J., Moon, T., Hyun, S.D., Park, H.W., Park, M.H., and Hwang, C.S.: Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors. Nano Energy 39, 390 (2017).
15.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Lee, Y.H., Hyun, S.D., and Hwang, C.S.: Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Adv. Mater. 28, 7956 (2016).
16.Park, M.H., Schenk, T., Hoffmann, M., Knebel, S., Gärtner, J., Mikolajick, T., and Schroede, U.: Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications. Nano Energy 36, 381 (2017).
17.Smith, S.W., Kitahara, A.R., Rodriguez, M.A., Henry, M.D., Brumbach, M.T., and Ihlefeld, J.F.: Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films. Appl. Phys. Lett. 110, 072901 (2017).
18.Jachalke, S., Schenk, T., Park, M.H., Schroeder, U., Mikolajick, T., Stöcker, H., Mehner, E., and Meyer, D.C.: Pyroelectricity of silicon-doped hafnium oxide thin films. Appl. Phys. Lett. 112, 142901 (2018).
19.Mulaosmanovic, H., Ocker, J., Müller, S., Noack, M., Müller, J., Polakowski, P., Mikolajick, T., and Slesazeck, S.: Novel ferroelectric FET based synapse for neuromorphic systems. VLSI Technology, 2017 Symposium on. doi: 10.23919/VLSIT. 2017. 7998165.
20.Mulaosmanovic, H., Mikolajick, T., and Slesazeck, S.: Random number generation based on ferroelectric switching. IEEE Electron Device Lett. 39, 135138 (2018).
21.Scott, J.F.: Ferroelectric Memories (Springer-Verlag, Berlin, Heidelberg, 2000). doi: 10.1007/978-3-662-04307-3.
22.Scott, J.F. and de Araujo, C.A.P.: Ferroelectric memories. Science 246, 1400 (1989).
23.Koo, J.-M., Seo, B.-S., Kim, S., Shin, S., Lee, J.-H., Baik, H., Lee, J.-H., Lee, J.H., Bae, B.-J., Lim, J.-E., Yoo, D.-C., Park, S.-O., Kim, H.-S., Han, H., Baik, S., Choi, J.-Y., Park, Y.J., and Park, Y.: Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. IEDM Tech. Digest. 340343 (2005). DOI: 10.1109/IEDM.2005.1609345.
25.Okuyama, M.: Features, Principles and development of ferroelectric-gate field-effect transistor. Ch. 1. In Ferroelectric-gate Field Effect Transistor Memories, edited by Park, B.-E., Ishiwara, H., Okuyama, M., Sakai, S., and Yoon, S.-M., Topics in Applied Physics 131, (Springer Science+Business Media Dordrecht, Dordrecht, Netherlands, 2016.
26.Hwang, C.S. (ed.): Atomic Layer Deposition for Semiconductors, (Springer, New York, 2013).
27.Maruyama, K., Kondo, M., Singh, S.K., and Ishiwara, H.: New ferroelectric material for embedded FRAM LSIs. Fujitsu Sci. Tech. J 43, 502507 (2007).
28.Lines, M.E. and Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, USA, 2001).doi: 10.1093/acprof:oso/9780198507789.001.0001.
29.Shuai, Y., Zhou, S., Streit, S., Reuther, H., Bürger, D., Slesazeck, S., Mikolajick, T., Helm, M., and Schmidt, H.: Reduced leakage current in BiFeO3 thin films with rectifying contacts. Appl. Phys. Lett. 98, 232901 (2011).
30.Watanabe, T., Hoffmann-Eifert, S., Peter, F., Mi, S., Jia, C., Hwang, C.S., and Waser, R.: Liquid injection ALD of Pb(Zr,Ti)O3 thin films by a combination of self-regulating component oxide processes. J. Electrochem. Soc. 154, G262 (2007).
31.McDaniel, M.D., Ngo, T.Q., Hu, S., Posadas, A., Demkov, A.A., and Ekerdt, J.G.: Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors. Appl. Phys. Rev. 2, 041301 (2015).
32.Ihlefeld, J.F., Harris, D.T., Keech, R., Jones, J.L., Maria, J., and Trolier-McKinstry, S.: Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 99, 25372557 (2016).
33.Tybell, T., Ahn, C.H., and Triscone, J.-M.: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999).
34.Junquera, J. and Ghosez, P.: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).
35.Fong, D.D., Brian Stephenson, G., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., and Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 304, 1650 (2004).
36.Sai, N., Kolpak, A.M., and Rappe, A.M.: Ferroelectricity in ultrathin perovskite films. Rhys. Rev. B 72, 020101 (2005).
37.Polakowski, P., Riedel, S., Weinreich, W., Rudolf, M., Sundqvist, J., Seidel, K., and Müller, J.: Memory Workshop (IMW), 2014 IEEE 6th International, doi: 10.1109/IMW.2014.6849367.
38.Pešić, M., Schroeder, U., and Mikolajick, T.: HfO2 based FeRAM and capacitor for 1T/1C memory cell. Ferroelectric one transistor-one capacitor memory cell: Ferroelectricity in Hafnium and Zirconium oxide: materials and devices (Elsevier), in preparation.
39.International Technology Roadmap for Semiconductors 2013 Edition. https://www.dropbox.com/sh/6xq737bg6pww9gq/AACQWcdHLffUeVloszVY6Bkla?dl=0&preview=2013ERD_Summary.pdf
40.Fujii, S., Kamimuta, Y., Ino, T., Nahasaki, Y., Takaishi, R., and Saitoh, M.: First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, VLSI Technology 2016 IEEE Symposium, 2016.
41.Max, B., Hoffmann, M., Slesazeck, S., and Mikolajick, T.: Ferroelectric Tunnel Junctions based on Ferroelectric-Dielectric HfZrO2/Al2O3 Capacitor Stack, European Solid State Device Research Conference (ESSDERC), 2018.
42.Pesic, M., di Lecce, V., Hoffmann, M., Mulaosmanovic, H., Max, B., Schröder, U., Slesazeck, S., Larcher, L., and Mikolajick, T.: Physical and circuit modeling of HfO2 based ferroelectric memories and devices. SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) IEEE, 2017.
43.Ma, T.P. and Han, J.-P.: Why is nonvolatile ferroelectric memory field-effect transistor still elusive?. IEEE Electron Device Lett. 23, 386 (2002).
44.Schroeder, U., Slesazeck, S., and Mikolajick, T.: Nonvolatile field-effect transistors using ferroelectric doped HfO2 films. Ch. 3. In Ferroelectric-gate Field Effect Transistor Memories, edited by Park, B.-E., Ishiwara, H., Okuyama, M., Sakai, S., and Yoon, S.-M., Topics in Applied Physics 131, (Springer Science+Business Media Dordrecht, Dordrecht, Netherlands, 2016).
45.Aizawa, K., Park, B.-E., Kawashima, Y., Takahashi, K., and Ishiwara, H.: Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors. Appl. Phys. Lett. 85, 3199 (2004).
46.Sakai, S., Ilangovan, R., and Takahashi, M.: Pt/SrBi2Ta2O9/Hf-Al-O/Si Field-effect-transistor with long retention using unsaturated ferroelectric polarization switching. Jpn. J. Appl. Phys. 43, 7876 (2004).
47.Takahashi, M. and Sakai, S.: Self-aligned-gate Metal/Ferroelectric/Insulator/Semiconductor field-effect transistors with long memory retention. Jpn. J. Appl. Phys. 44, L800 (2005).
48.Hai, L.V., Takahashi, M., Zhang, W., and Sakai, S.: 100-nm-size ferroelectric-gate field-effect transistor with 108-cycle endurance. Jpn. J. Appl. Phys. 54, 088004 (2015).
49.Dünkel, S., Trentzsch, M., Richter, R., Moll, P., Fuchs, C., Gehring, O., Majer, M., Wittek, S., Müller, B., Melde, T., Mulaosmanovic, H., Slesazeck, S., Müller, S., Ocker, J., Noack, M., Löhr, D.-A., Polakowski, P., Müller, J., Mikolajick, T., Höntschel, J., Rice, B., Pellerin, J., and Beyer, S.: A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. Electron Devices Meeting (IEDM), 2017 IEEE International, 2017; pp. 19.7.119.7.4.
50.Gong, N., and Ma, T.P.: Why is retention time for HfO2-based ferroelectric longer than those for PZT or SBT in 1-T memory cell?, IEEE Electron Device Lett. 37, 1123 (2016).
51.Takahashi, K., Aizawa, K., Park, B.-E, and Ishiwara, H.: Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. 44, 6218 (2005).
52.Yurchuk, E., Müller, J., Paul, J., Schlösser, T., Martin, D., Hoffmann, R., Müeller, S., Slesazeck, S., Schröeder, U., Boschke, R., van Bentum, R., and Mikolajick, T.: Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Trans. Electron Devices 61, 3699 (2014).
53.Genenko, Y.A., Zhukov, S., Yampolskii, S.V., Schütrumpf, J., Dittmer, R., Jo, W., Kungl, H., Hoffmann, M.J., and von Seggern, H.: Universal polarization switching behavior of disordered ferroelectrics. Adv. Funct. Mater. 22, 2058 (2012).
54.Mulaosmanovic, H., Ocker, J., Müller, S., Schroeder, U., Müller, J., Polakowski, P., Flachowsky, S., van Bentum, R., Mikolajick, T., and Slesazeck, S.: Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces 9, 3792 (2017).
55.Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 106, 051606 (2006).
56.Pinnow, C.-U. and Mikolajick, T.: Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13K19 (2004).
57.Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Kim, H.K., and Hwang, C.S.: Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102, 112914 (2013).
58.Hartner, W., Bosk, P., Schindler, G., Bachhofer, H., Mört, M., Wendt, H., Mikolajick, T., Dehm, C., Schroeder, H., and Waser, R.: SrBi2Ta2O9 ferroelectric thin film capacitors: degradation in a hydrogen ambient. Appl. Phys. A 77, 571 (2003).
59.Aggarwal, S., Perusse, S.R., Tipton, C.W., Ramesh, R., Drew, H.D., Venkatesan, T., Romero, D.B., Podobedov, V.B., and Weber, A.: Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors. Appl. Phys. Lett. 73, 1973 (1998).
60.Rodriguez, J., Remack, K., Gertas, J., Wang, L., Zhou, C., Boku, K., Rodriguez-Latorre, J., Udayakumar, K.R., Summerfelt, S., and Moise, T.: Reliability of ferroelectric random access memory embedded within 130 nm CMOS. in Reliability Physics Symposium (IRPS), 2010 IEEE International 750758 (2010). DOI: 10.1109/IRPS.2010.5488738.
61.Florent, K., Lavizzari, S., Di Piazza, L., Popovici, M., Duan, J., Groeseneken, G., and Van Houdt, J.: Reliability study of ferroelectric Al:HfO2 thin films for DRAM and NAND applications. IEEE Trans. Electron Devices 64, 4091 (2017).
62.Pešić, M., Schroeder, U., Slesazeck, S., and Mikolajick, T.: Comparative study of reliability of ferroelectric and anti-ferroelectric memories. in IEEE Transactions on Device and Materials Reliability 18, 154162 (2018).
63.Lo, V.C.: Modeling the role of oxygen vacancy on ferroelectric properties in thin films. J. Appl. Phys. 92, 67786786 (2002).
64.Fengler, F.P.G., Hoffmann, M., Slesazeck, S., Mikolajick, T., and Schroeder, U.: On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2. J. Appl. Phys. 123, 20 (2018).
65.Zhou, D., Xu, J., Li, Q., Guan, Y., Cao, F., Dong, X., Müller, J., Schenk, T., and Schröder, U.: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103, 192904 (2013).
66.Fengler, F.P.G., Pešić, M., Starschich, S., Schneller, T., Künneth, C., Böttger, U., Mulaosmanovic, H., Schenk, T., Park, M.H., Nigon, R., Muralt, P., Mikolajick, T., and Schroeder, U.: Domain pinning: comparison of hafnia and PZT based ferroelectrics. Adv. Electron. Mater. 3, 1600505 (2017).
67.Genenko, Y.A., Glaum, J., Hoffmann, M.J., and Albe, K.: Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52 (2015).
68.Pešić, M., Fengler, F.P.G., Larcher, L., Padovani, A., Schenk, T., Grimley, E. D, Sang, X., LeBeau, J. M, Slesazeck, S., Schroeder, U., and Mikolajick, T.: Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601 (2016).
69.Schenk, T., Yurchuk, E., Mueller, S., Schroeder, U., Starschich, S., Böttger, U., and Mikolajick, T.: About the deformation of ferroelectric hysteresis. Appl. Phys. Rev. 1, 041103 (2014).
70.Schenk, T., Hoffmann, M., Ocker, J., Pešic, M., Mikolajick, T., and Schroeder, U.: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224 (2015).
71.Lomenzo, P.D., Takmeel, Q., Zhou, C., Fancher, C.M., Lambers, E., Rudawski, N.G., Jones, J.L., Moghaddam, S., and Nishida, T.: TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J. Appl. Phys. 117, 134105 (2015).
72.Kim, H.J., Park, M.H., Kim, Y.J., Lee, Y.H., Moon, T., Kim, K.D., Hyun, S.D., and Hwang, C.S.: A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 8, 1383 (2016).
73.Park, M.H., Kim, H.J., Kim, Y.J., Lee, Y.H., Moon, T., Kim, K.D., Hyun, S.D., Fengler, F., Schroeder, U., and Hwang, C.S.: Effect of Zr content on the wake-up effect in Hf1–xZrxO2 films. ACS Appl. Mater. Interfaces 8, 15466 (2016).
74.Grimley, E.D., Schenk, T., Sang, X., Pešić, M., Schroeder, U., Mikolajick, T., and LeBeau, J.M.: Structural changes underlying field cycling phenomena in ferroelectric HfO2 thin films. Adv. Electron. Mater. 2, 1600173 (2016).
75.Shimizu, T., Yokouchi, T., Oikawa, T., Shiraishi, T., Kiguchi, T., Akama, A., Konno, T.J., Gruverman, A., and Funakubo, H.: Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 106, 112904 (2015).
76.Hoffmann, M., Schroeder, U., Schenk, T., Shimizu, T., Funakubo, H., Sakata, O., Pohl, D., Drescher, M., Adelmann, C., Materlik, R., Kersch, A., and Mikolajick, T.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).
77.Starschich, S., Menzel, S., and Böttger, U.: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl. Phys. Lett. 108, 032903 (2016).
78.Starschich, S., Menzel, S., and Böttger, U.: Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2. J. Appl. Phys. 121, 154102 (2017).
79.Max, B., Pešić, M., Slesazeck, S., and Mikolajick, T.: Interplay between ferroelectric and resistive switching in doped crystalline HfO2. J. Appl. Phys. 123, 134102 (2018).
80.Schönhals, A., Rosário, C.M.M., Hoffmann-Eifert, S., Waser, R., Menzel, S., and Wouters, D.J.: Role of the electrode material on the RESET limitation in oxide ReRAM devices. Adv. Electron. Mater. 4, 1700243 (2018).
81.Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Moon, T., and Hwang, C.S.: Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).
82.Lomenzo, P.D., Takmeel, Q., Moghaddam, S., and Nishida, T.: Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films 615, 139 (2016).
83.Richter, C., Schenk, T., Park, M.H., Tscharntke, F.A., Grimley, E.D., LeBeau, J.M., Zhou, C., Fancher, C.M., Jones, J.L., Mikolajick, T., and Schroeder, U.: Si doped hafnium oxide—a “fragile” ferroelectric system. Adv. Electron. Mater. 3, 1700131 (2017).
84.Schroeder, U., Richter, C., Park, M.H., Schenk, T., Pešić, M., Hoffmann, M., Fengler, F.P.G., Pohl, D., Rellinghaus, B., Zhou, C., Chung, C.C., Jones, J.L., and Mikolajick, T.: Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg. Chem. 57, 2752 (2018).
85.Park, M.H., Schenk, T., Hwang, C.S., and Schroeder, U.: Electrodes for fluorite-type ferroelectrics, Ferroelectricity in Hafnium and Zirconium oxide: materials and devices (Elsevier). In preparation.
86.Chernikova, A.G., Kozodaev, M.G., Negrov, D.V., Korostylev, E.V., Park, M.H., Schroeder, U., Hwang, C.S., and Markeev, A.M.: Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces 10, 2701 (2018).
87.Park, M.H., Kim, H.J., Kim, Y.J., Jeon, W., Moon, T., and Hwang, C.S.: Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on tin bottom and tin or RuO2 top electrodes. Phys. Status Solidi RRL 8, 532 (2014).
88.Clima, S., Wouters, D.J., Adelmann, C., Schenk, T., Schroeder, U., Jurczak, M., and Pourtois, G.: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2: a first principles insight. Appl. Phys. Lett. 104, 092906 (2014).
89.Migita, S., Ota, H., Yamada, H., Sawa, A., and Toriumi, A.: Thickness-independent behavior of coercive field in HfO2-based ferroelectrics. IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers.
90.Wang, L.-M.: Relationship between Intrinsic Breakdown Field and Bandgap of Materials. 25th International Conference on Microelectronics. doi: 10.1109/ICMEL.2006.1651032.
91.Lu, W., Li, H., and Cao, W.: Landau expansion parameters for BaTiO3. J. Appl. Phys. 114, 224106 (2013).
92.Huan, T.D., Sharma, V., Rossetti, G.A. Jr., and Ramprasad, R.: Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).
93.Barabash, S.V., Pramanik, D., Zhai, Y., Magyari-Kope, B., and Nishi, Y.: Ferroelectric switching pathways and energetics in (Hf,Zr)O2. ECS Trans. 75, 107 (2017).
94.McKenna, K. and Shluger, A.: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009).
95.Park, M.H., Kim, H.J., Lee, Y.H., Kim, Y.J., Moon, T., Kim, K.D., Hyun, S.D., and Hwang, C.S.: Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films. Nanoscale 8, 13898 (2016).
96.Mittmann, T., Fengler, F.P.G., Richter, C., Park, M.H., Mikolajick, T., and Schroeder, U.: Optimizing process conditions for improved Hf1−xZrxO2 ferroelectric capacitor performance. Microelectron. Engineer. 178, 48 (2017).
97.Kim, K.D., Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Lee, Y.H., Hyun, S.D., Gwon, T., and Hwang, C.S.: Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. J. Mater. Chem. C 4, 6864 (2016).
98.Lee, Y.H., Kim, H.J., Moon, T., Kim, K.D., Hyun, S.D., Park, H.W., Lee, Y.B., Park, M.H., and Hwang, C.S.: Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering. Nanotechnology 28, 305703 (2017)
99.Kim, H.J., Park, M.H., Kim, Y.J., Lee, Y.H., Jeon, W., Gwon, T., Moon, T., Kim, K.D., and Hwang, C.S.: Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 105, 192903 (2014).
100.Grimley, E.D., Schenk, T., Mikolajick, T., Schroeder, U., and LeBeau, J.M.: Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).
101.Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U., and Mikolajick, T.: Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412 (2012).
102.Pešić, M., Li, T., Di Lecce, V., Hoffmann, M., Materano, M., Richter, C., Max, B., Slesazeck, S., Schroeder, U., Larcher, L., and Mikolajick, T.: Built-in bias generation in anti-ferroelectric stacks: methods and device applications. IEEE Journal of the Electron Devices Society. doi: 10.1109/JEDS.2018.2825360.
103.Pešić, M., Hoffmann, M., Richter, C., Mikolajick, T., and Schroeder, U.: Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv. Funct. Mater. 26, 7486 (2016).
104.Fengler, F.P.G., Nigon, R., Muralt, P., Grimley, E.D., Sang, X., Sessi, V., Hentschel, R., LeBeau, J.M., Mikolajick, T., and Schroeder, U.: Analysis of performance instabilities of hafnia-based ferroelectrics using modulus spectroscopy and thermally stimulated depolarization currents. Adv. Electron. Mater. 4, 1700547 (2018).
105.Polakowski, P. and Mueller, J.: Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106, 232905 (2015).
106.Mueller, S., Summerfelt, S.R., Muller, J., Schroeder, U., and Mikolajick, T.: Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. Electron Device Lett. 33, 1300 (2012).
107.Mueller, S., Muller, J., Schroeder, U., and Mikolajick, T.: Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans. Device Mater. Rel. 13, 93 (2013).
108.Mueller, S., Muller, J., Hoffmann, R., Yurchuk, E., Schlosser, T., Boschke, R., Paul, J., Goldbach, M., Herrmann, T., Zaka, A., Schroder, U., and Mikolajick, T.: From MFM capacitors toward ferroelectric transistors: endurance and disturb characteristics of HfO2-based FeFET devices. IEEE Trans. Electron Devices 60, 4199 (2013).
109.Lomenzo, P.D., Takmeel, Q., Zhou, C., Chung, C.-C., Moghaddam, S., Jones, J.L., and Nishida, T.: Mixed Al and Si doping in ferroelectric HfO2 thin films. Appl. Phys. Lett. 107, 242903 (2015).
110.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Lee, Y.H., Hyun, S.D., and Hwang, C.S.: Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 3, 6291 (2015).
111.Yurchuk, E., Mueller, S., Martin, D., Slesazeck, S., Schroeder, U., and Mikolajick, T.: Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories, 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, 2014, pp. 2E.5.1–2E.5.5. doi: 10.1109/IRPS.2014.686060.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed