Skip to main content Accessibility help
×
Home

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique

  • Martina Aurora Costa Angeli (a1), Tobias Cramer (a2), Beatrice Fraboni (a2), Luca Magagnin (a1), Dario Gastaldi (a1) and Pasquale Vena (a1)...

Abstract

Inkjet printing is a promising technology providing cost-effective method for processing various materials on deformable substrates. In this work, linear and serpentine inkjet printed interconnects on two different substrates were fabricated and electromechanically characterized. A particular attention was given to the optimization of the process parameters; high quality can be achieved only printing slowly in vertical direction and optimizing the drop spacing to the specific pattern. The electromechanical results showed that the geometrical layout and printing direction strongly affect the printing quality and the electromechanical response; serpentine shapes should be preferred to straight interconnects as better gauge factors are obtained.

Copyright

Corresponding author

Address all correspondence to Martina Aurora Costa Angeli at martinaaurora.costa@polimi.it

References

Hide All
1.Stringer, J., Althagathi, T.M., Tse, C.C.W., Duong Ta, V., Shephard, J.D., Esenturk, E., Connaughton, C., Wasley, T.J., Li, J., Kay, R.W., and Smith, P.J.: Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality. Manufacturing Rev. 3, 117 (2016).
2.Sowade, E., Ramon, E., Yoti Mitra, K., Martínez-Domingo, C., Pedró, M., Pallarès, J., Loffredo, F., Villani, F., Gomes, H.L., Terés, L., and Baumann, R.R.: All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis. Sci. R. 6, 33490–33415 (2016).
3.Correia, V., Mitra, K.Y., Castro, H., Rocha, J.G., Sowade, E., Baumann, R.R., and Lanceros-Mendez, S.: Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. J. Manuf. Process. 31, 364371 (2018).
4.Borghetti, M, Serpelloni, M., Sardini, E., and Pandini, S.: Mechanical behavior of strain sensors based on PEDOT:PSS and silvernanoparticles inks deposited on polymer substrate by inkjet printing. Sens. Actuators A 243, 7180 (2016).
5.Islam Khan, N., Maddaus, A.G., and Song, E.: A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Bionsens. 8, 725 (2018).
6.Gonzalez, M., Axisa, F., Vanden Bulcke, M., Brosteaux, D., Vandevelde, B., and Vanfleteren, J.: Design of metal interconnects for stretchable electronic circuits. Micro. Reliab. 48, 825832 (2008).
7.Khan, S., Lorenzelli, L., and Dahiya, R.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J. 15, 31643185 (2014).
8.Cheng, T., Wu, Y., Shen, X., Lai, W., and Huang, W.: Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond. 39, 15001–8 (2018).
9.Jiang, J., Bao, B., Li, M., Sun, J., Zhang, C., Li, Y., Li, F., Yao, X., and Song, Y.: Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 14201426 (2016).
10.Kim, Y., Ren, X., Kim, J.W., and Noh, H.: Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane (PDMS). Microchip. J. Micromech. Microeng. 24, 115010–10 (2014).
11.Abu-Khalaf, J., Saraireh, R., Eisa, S., and Al-Halhouli, A.: Experimental characterization of inkjet-printed stretchable circuits for wearable sensor applications. Sensors 18, 34763499 (2018).
12.Bowden, N., Huck, W.T.S., Paul, K.E., and Whitesides, G.M.: The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. App. Phys. Lett. 75, 25572559 (1999).
13.Guo, L. and DeWeerth, S.P.: Effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6, 28472852 (2010).
14.Aziz, S., Go Bum, K., Jin Yang, Y., Yang, B., Kang, C.U., Hoi Doh, Y., Hyun Choi, K., and Chan Kim, H.: Fabrication of ZnSnO3 based humidity sensor onto arbitrary substrates by micro-Nano scale transfer printing. Sens. Actuators A. 246, 18 (2016).
15.Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., and Park, I.: Highly stretchable and sensitive strain sensor based on silvernanowire elastomer nanocomposite. AcS Nano 8, 51545163 (2014).
16.Cammarano, A., De Luca, G., and Amendola, E.: Surface modification and adhesion improvement of polyester films. Cent. Eur. J. Chem. 11, 3545 (2013).
17.Seifert, T., Sowade, E., Roscher, F., Wiemer, M., Gessner, T., and Baumann, R.R.: Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769779 (2015).
18.Sowade, E., Polomoshnov, M., and Baumann, R.R.: The design challenge in printing devices and circuits: influence of the orientation of print patterns in inkjet-printed electronics. Org. Electron. 37, 428438 (2016).
19.Madsen, M.H., Feidenhans, N.A., Hansen, P., Garnæs, J., and Dirscherl, K.: Accounting for PDMS shrinkage when replicating structures. J. Micromech. Microeng. 24, 127002–6 (2014).
20.Bonacchini, G.E., Bossio, C., Greco, F., Mattoli, V., Kim, Y., Lanzani, G., and Caironi, M: tattoo-paper transfer as a versatile platform for all-printed organic edible electronics. Adv. Mater. 30, 1706091–8 (2018).

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Costa Angeli et al. supplementary material
Figures S1-S3

 Word (1.6 MB)
1.6 MB

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique

  • Martina Aurora Costa Angeli (a1), Tobias Cramer (a2), Beatrice Fraboni (a2), Luca Magagnin (a1), Dario Gastaldi (a1) and Pasquale Vena (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.