Skip to main content Accessibility help
×
Home

Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy

  • Brittany Lynn (a1), Alexander Miles (a1), Soroush Mehravar (a1), Pierre-Alexandre Blanche (a1), Khanh Kieu (a1), Robert A. Norwood (a1) and N. Peyghambarian (a1)...

Abstract

A model with which to predict the effect of coplanar electrode geometry on diffraction uniformity in photorefractive polymer display devices was developed. Assumptions made in the standard use cases are no longer valid in the regions of extreme electric fields present in this type of device. Using electric-field induced second-harmonic generation through multiphoton microscopy, the physical response in regions of internal electric fields which fall outside the standard regimes of validity were probed. Adjustments to the standard model were made and the results of the new model corroborated through holographic four-wave mixing measurements.

Copyright

Corresponding author

Address all correspondence to Pierre-Alexandre Blanche atpablanche@optics.arizona.edu

References

Hide All
1.Ducharme, S., Scott, J.C., Twieg, R.J., and Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846 (1991).
2.Meerholz, K., Volodin, B.L., Sandalphon, , Kippelen, B., and Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497 (1994).
3.Eralp, M., Thomas, J., Li, G., Tay, S., Schulzgen, A., Norwood, R.A., Peyghambarian, N., and Yamamoto, M.: Photorefractive polymer device with video-rate response time operating at low voltages. Opt. Lett. 31, 1408 (2006).
4.Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christenson, C.W., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R.A., Yamamoto, M., and Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80 (2010).
5.Christenson, C.W., Greenlee, C., Lynn, B., Thomas, J., Blanche, P.-A., Voorakaranam, R., St. Hilaire, P., Lacomb, L. Jr., Norwood, R.A., Yamamoto, M., and Peyghambarian, N.: Interdigitated coplanar electrodes for enhanced sensitivity in a photorefractive polymer. Opt. Lett. 36, 3377 (2011).
6.Bosshard, Ch., Hulliger, J., Florsheimer, M., and Gunter, P.: Organic Nonlinear Optical Materials (CRC Press, London, England, 2001).
7.Singer, K.D., Kuzyk, M.G., Holland, W.R., Sohn, J.E., Lalama, S.J., Comizzoli, R.B., Katz, H.E., and Schilling, M.L.: Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl. Phys. Lett. 53, 1800 (1988).
8.Ostroverkhova, O., Stickrath, A., and Singer, K.D.: Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers. J. Appl. Phys. 91, 9481 (2002).
9.Lüpke, G., Meyer, C., Ohlhoff, C., Kurz, H., Lehmann, S., and Marowsky, G.: Optical second-harmonic generation as a probe of electric-field-induced perturbation of centrosymmetric media. Opt. Lett. 20, 1997 (1995).
10.Vannikov, A.V., Gorbunova, Y.G., Grishina, A.D., and Tsivadze, A.Y.: Photoelectric, nonlinear optical, and photorefractive properties of polymer composites based on supramolecular ensembles of Ru(II) and Ga(III) complexes with tetra-15-crown-5-phthalocyanine. Prot. Met. Phys. Chem. Surf. 49, 57 (2013).
11.Boyd, R.W.: Nonlinear Optics, 3rd ed. (Elsevier Science, Philadelphia, 2008).
12.Dalton, L.R., Harper, A.W., and Robinson, B.H.: The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in electrically poled polymeric thin films. Proc. Natl. Acad. Sci. USA 94, 4842 (1997).
13.Kieu, K., Mehravar, S., Gowda, R., Norwood, R.A., and Peyghambarian, N.: Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber. Biomed. Opt. Express 4, 334 (2013).
14.Kieu, K. and Mansuripur, M.: Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube /polymer composite. Opt. Lett. 32, 2242 (2007).
15.Mansuripur, M.: Classical Optics and its Application, 2nd ed. (Cambridge University Press, Cambridge, England, 2009).
16.Ostroverkhova, O. and Singer, K.D.: Space-charge dynamics in photorefractive polymers. J. Appl. Phys., 92, 1727 (2002).
17.Schildkraut, J.S. and Cui, Y.: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72, 5055 (1992).
18.Schildkraut, J.S. and Buettner, A.V.: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys 72, 1888 (1992).
19.Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, England, 2007).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed