Skip to main content Accessibility help
×
Home

Preparation of Mn-doped BiOBr microspheres for efficient visible-light-induced photocatalysis

  • Zhen Wei (a1), Guohua Jiang (a1), Liang Shen (a2), Xia Li (a1), Xiaohong Wang (a1) and Wenxing Chen (a1)...

Abstract

Mn-doped bismuth oxide bromide microspheres have been prepared by the hydrothermal method. The resultant composite microspheres exhibited higher photocatalytic activity under visible light irradiation, attributing to the improvement of the photo-absorption property and the separation efficiency of photogenerated electrons and holes. The holes and O2•− are the main active species in aqueous solution under visible light irradiation, rather than •OH.

Copyright

Corresponding author

Address all correspondence to Guohua Jiang atghjiang_cn@aliyun.com

References

Hide All
1.Shen, X., Zhang, Z., Zhou, B., Peng, J., Xie, M., Zhang, M., and Pang, D.: Visible light-induced plasmid DNA damage catalyzed by a CdSe/ZnS-photosensitized nano-TiO2 film. Environ. Sci. Technol. 42, 5049 (2008).
2.Turkar, S.S., Bharti, D.B., and Gaikwad, G.S.: Various methods involved in waste water treatment to control water pollution. J. Chem. Pharm. Res. 3, 58 (2011).
3.Gustavo, P. and Damià, B.: Photosensitized degradation of organic pollutants in water: processes and analytical applications. TrAC, Trends Anal. Chem. 17, 605 (1998).
4.He, C., Asi, M.A., Xiong, Y., Shu, D., and Li, X.: Photoelectrocatalytic degradation of organic pollutants in aqueous solution using a Pt-TiO2 Film. Int. J. Photoenergy 2009, 634369 (2009).
5.Galindo, C., Jacques, P., and Kalt, A.: Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). J. Photochem. Photobiol., A 141, 47 (2001).
6.Chatterjee, D. and Mahata, A.: Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J. Photochem. Photobiol., A 153, 199 (2002).
7.Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., and Chen, W.: Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 4154 (2011).
8.Zainal, Z., Hui, L.K., Hussein, M.Z., Abdullah, A.H., and Hamadneh, I.R.: Characterization of TiO2-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. J. Hazard. Mater. 164, 138 (2009).
9.Jiang, G., Wang, X., Zhou, Y., Wang, R., Hu, R., Xi, X., and Chen, W.: Hollow TiO2 nanocages with rubik-like structure for high-performance photocatalysts. Mater. Lett. 89, 59 (2012).
10.Jiang, G. and Zeng, J.: Preparation of nano-TiO2/polystyrene hybrid microspheres and their antibacterial properties. J. Appl. Polym. Sci. 116, 779 (2010).
11.Xie, Y. and Yuan, C.: Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Appl. Surf. Sci. 221, 17 (2004).
12.Chen, L., Chen, F., Shi, Y., and Zhang, J.: Preparation and visible light photocatalytic activity of a graphite-like carbonaceous surface modified TiO2 photocatalyst. J. Phys. Chem. C 116, 8579 (2012).
13.Kalyanasundaram, K. and Grätzel, M.: Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 77, 347 (1998).
14.Li, Z., Luo, W., Zhang, M., Feng, J., and Zou, Z.: Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347 (2013).
15.Primo, A., Corma, A., and García, H.: Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886 (2011).
16.Zhao, Y., Wei, M., Lu, J., Wang, Z., and Duan, X.: Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance. ACS Nano 3, 4009 (2009).
17.Yu, C., Yang, K., Xie, Y., Fan, Q., Yu, J., Shu, Q., and Wang, C.: Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5, 2142 (2013).
18.Zhu, J., Cao, Y., Bian, Z., Wang, S., Huo, Y., Li, H., and Lu, Y.: Synthesis of photocatalytic TiO2 with controlled hierarchical structure by alcohol-induced assembly. Sci. Sin. Chim. 42, 1627 (2012).
19.Li, Y., Liu, J., and Huang, X.: Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures. Nanoscale Res. Lett. 3, 365 (2008).
20.Zhang, H., Liu, L., and Zhou, Z.: First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs). RSC Adv. 2, 9224 (2012).
21.Zhang, H., Liu, L., and Zhou, Z.: Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys. Chem. Chem. Phys. 4, 1286 (2012).
22.Jiang, G., Wang, R., Wang, X., Hu, R., Xi, X., Zhou, Y., Wang, S., Wang, T., and Chen, W.: Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl. Mater. Interfaces 4, 4440 (2012).
23.Wang, R., Jiang, G., Wang, X., Hu, R., Xi, X., Zhou, Y., Bao, S., Tong, T., Wang, S., Wang, T., and Chen, W.: Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr Microspheres. Powder Technol. 228, 258 (2012).
24.Jiang, G., Wang, X., Wei, Z., Li, X., Xi, X., Hu, R., Tang, B., Wang, R., Wang, S., Wang, T., and Chen, W.: Photocatalytic property of hierarchical structure based on Fe-doped BiOBr hollow microspheres. J. Mater. Chem. A 1, 2406 (2013).
25.Yao, W. and Yu, S.: Recent advances in hydrothermal syntheses of low dimensional nanoarchitectures. Int. J. Nanotechnol. 4, 129 (2007).
26.Deng, H., Wang, J., Peng, Q., Wang, X., and Li, Y.: Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes. Chem. Eur. J. 11, 6519 (2005).
27.Jiang, Z., Yang, F., Yang, G., Kong, L., Jones, M.O., Xiao, T., and Edwards, P.P.: The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J. Photochem. Photobiol. A 212, 8 (2010).
28.Song, S., Gao, W., Wang, X., Li, X., Liu, D., Xing, Y., and Zhang, H.: Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Trans. 41, 10472 (2012).
29.Cao, J., Xu, B., Lin, H., Luo, B., and Chen, S.: Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem. Eng. J. 91, 185 (2012).
30.Rao, J.L., Raju, B.D.P., Gopal, N.O., and Narasimhulu, K.V.: Electron paramagnetic resonance and optical absorption studies on Mn2+ ions doped in KZnClSO4·3H2O single crystals. Phys. B 355, 207 (2012).
31.Ye, L., Liu, J., Gong, C., Tian, L., Peng, T., and Zan, L.: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2, 1677 (2012).
32.Abdollahi, Y., Abdullah, A.H., Zainal, Z., and Yusof, N.A.: Synthesis and characterization of Manganese doped ZnO nanoparticles. Inter. J. Basic Appl. Sci. 11, 62 (2011).
33.Liu, L., Zuo, R., Sun, Q., and Liang, Q.: Structure and electrical properties of Mn doped Bi(Mg1/2Ti1/2)O3-PbTiO3 ferroelectric thin films. Appl. Surf Sci. 268, 327 (2013).
Type Description Title
WORD
Supplementary materials

Wei Supplementary Material
Supplementary Material

 Word (3.3 MB)
3.3 MB
UNKNOWN
Supplementary materials

Wei Supplementary Material
Image

 Unknown (994 KB)
994 KB
UNKNOWN
Supplementary materials

Wei Supplementary Material
Image

 Unknown (2.6 MB)
2.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed