Skip to main content Accessibility help
×
Home

Polydiacetylene ribbons formed using the controlled evaporative self-assembly (CESA) method

  • E. Van Keuren (a1), C. Pornrungroj (a2), C. Fu (a2), X. Zhang (a1), S. Okada (a3), H. Katsuyama (a3), K. Kikuchi (a3), T. Onodera (a2) and H. Oikawa (a2)...

Abstract

Methods for the control of molecular deposition and orientation are critical for the development of organic electronic devices. Here, we show the fabrication of ribbons of the optical material polydiacetylene (PDA) using a controlled evaporative self-assembly method. The ability to form these ribbons is highly dependent on both the side groups on the PDA as well as the solvent used in the preparation. Arrays of ribbons of one type of PDA, poly[1,6-di(N-carbazolyl)-2,4-hexadiyne], with widths on the order of 1–2 µm and lengths of 100s of micrometers, could be successfully obtained with good orientation.

Copyright

Corresponding author

Address all correspondence to E. Van Keuren at erv@georgetown.edu

References

Hide All
1.Ward, J.W., Lamport, Z.A., and Jurchescu, O.D.: Versatile organic transistors by solution processing. Chem. Phys. Chem. 16, 1118 (2015).
2.Sekine, C., Tsubata, Y., Yamada, T., Kitano, M., and Doi, S.: Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci. Technol. Adv. Mater. 15, 034203 (2014).
3.Gao, X. and Zhao, Z.: High mobility organic semiconductors for field-effect transistors. Sci. China-Chem. 58, 947 (2015).
4.Patel, B.B. and Diao, Y.: Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology 29, 044004 (2018).
5.Bi, S., He, Z., Chen, J., and Li, D.: Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv. 5, 077170 (2015).
6.Han, W., Byun, M., Zhao, L., Rzayev, J., and Lin, Z.: Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels. J. Mater. Chem. 21, 14248 (2011).
7.Liu, N., Zhou, Y., Wang, L., Peng, J., Wang, J., Pei, J., and Cao, Y.: In situ growing and patterning of aligned organic nanowire arrays via dip coating. Langmuir 25, 665 (2009).
8.Nakanishi, H. and Kasai, H.: Polydiacetylene microcrystals for third-order nonlinear optics. ACS Symp. Ser. 672, 183 (1997).
9.Oikawa, H.: Hybridized organic nanocrystals for optically functional materials. Bull. Chem. Soc. Jpn. 84, 233 (2011).
10.Camacho, M., Kar, A., Wherrett, B., Bakarezos, M., Rangel-Rojo, R., Yamada, S., Matsuda, H., Kasai, H., and Nakanishi, H.: All-optical switching potentiality in Fabry-Perot devices containing poly-DCHD. Opt. Commun. 251, 376 (2005).
11.Lee, J., Aleshin, A., Kim, D., Lee, H., Kim, Y., Wegner, G., Enkelmann, V., Roth, S., and Park, Y.: Field-effect mobility anisotropy in PDA-PTS single crystals. Synth. Met. 152, 169 (2005).
12.Nishide, J., Oyamada, T., Akiyama, S., Sasabe, H., and Adachi, C.: High field-effect mobility in an organic thin-film transistor with a solid-state polymerized polydiacetylene film as an active layer. Adv. Mater. 18, 3120 (2006).
13.Zou, G., Lim, E., Tamura, R., Kajimoto, N., Manaka, T., and Iwamoto, M.: Surface morphology and electrical transport properties of polydiacetylene-based organic field-effect transistors. Jpn. J. Appl. Phys. 45, 6436 (2006).
14.Koyanagi, T., Muratsubaki, M., Hosoi, Y., Shibata, T., Tsutsui, K., Wada, Y., and Furukawa, Y.: Organic field-effect transistor based on a thin film of polydiacetylene prepared from 10,12-pentacosadiynoic acid. Chem. Lett. 35, 20 (2006).
15.Wegner, G.: Topochemical reactions of monomers with conjugated triple-bonds. IV. Polymerization of bis-(p-toluene sulfonate) of 2.4-hexadiin-1.6-diol. Makromol. Chem. 145, 85 (1971).
16.Sandman, D.J., Samuelson, L.A., and Velazquez, C.S.: Synthesis and solid-state polymerization of urethane-substituted diacetylene monomers of improved purity. Polym. Commun. 27, 242 (1986).
17.Onodera, T., Oshikiri, T., Katagi, H., Kasai, H., Okada, S., Oikawa, H., Terauchi, M., Tanaka, M., and Nakanishi, H.: Nano-wire crystals of pi-conjugated organic materials. J. Cryst. Growth. 229, 586 (2001).
18.Iimori, Y., Onodera, T., Kasai, H., Mitsuishi, M., Miyashita, T., and Oikawa, H.: Fabrication of pseudo single crystalline thin films composed of polydiacetylene nanofibers and their optical properties. Opt. Mater. Express. 7, 2218 (2017).
19.Maillard, M., Motte, L., Ngo, A., and Pileni, M.: Rings and hexagons made of nanocrystals: a Marangoni effect. J. Phys. Chem. B. 104, 11871 (2000).
20.Ma, H., Dong, R., Horn, J.D., Hao, J., and Van Horn, J.D.: Spontaneous formation of radially aligned microchannels. Chem. Commun. 47, 2047 (2011).
21.Enkelmann, V.: Structural aspects of the topochemical polymerization of diacetylenes. Adv. Polym. Sci. 63, 91 (1984).
22.Tashiro, K., Nishimura, H., and Kobayashi, M.: First success in direct analysis of microscopic deformation mechanism of polydiacetylene single crystal by the x-ray imaging-plate system. Macromolecules 29, 8188 (1996).
23.Chung, H.R., Kwon, E., Oikawa, H., Kasai, H., and Nakanishi, H.: Effect of solvent on organic nanocrystal growth using the reprecipitation method. J. Cryst. Growth. 294, 459 (2006).
24.Hood, R., Muller, H., Eckhardt, C., Chance, R., and Yee, K.: Optical-properties of a polydiacetylene crystal––poly-[1,6-Di(N-carbazolyl)-2,4-hexadiyne]. Chem. Phys. Lett. 54, 295 (1978).
25.Wiebanga, E.H.: The crystal structure of diphenyldiacetylene. C6H5 C=C-C=C-C6H5. Z. Kristallogr. 102, 193 (1940).
26.Tieke, B., Bloor, D., and Young, R.: Solid-state polymerization of tricosa-10,12-diynoic acid. J. Mater. Sci. 17, 1156 (1982).
Type Description Title
WORD
Supplementary materials

Van Keuren et al. supplementary material
Figures S1-S5

 Word (1.2 MB)
1.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed