Skip to main content Accessibility help
×
Home

Piezoelectric bioMEMS cantilever for measurement of muscle contraction and for actuation of mechanosensitive cells

  • Elizabeth A. Coln (a1) (a2), Alisha Colon (a1), Christopher J. Long (a3), Narasimhan Narasimhan Sriram (a3), Mandy Esch (a4), Jean-Matthieu Prot (a4), Daniel H. Elbrecht (a1), Ying Wang (a4), Max Jackson (a3), Michael L. Shuler (a3) (a4) and James J. Hickman (a1) (a2) (a3)...

Abstract

A piezoelectric biomedical microelectromechanical system (bioMEMS) cantilever device was designed and fabricated to act as either a sensing element for muscle tissue contraction or as an actuator to apply mechanical force to cells. The sensing ability of the piezoelectric cantilevers was shown by monitoring the electrical signal generated from the piezoelectric aluminum nitride in response to the contraction of iPSC-derived cardiomyocytes cultured on the piezoelectric cantilevers. Actuation was demonstrated by applying electrical pulses to the piezoelectric cantilever and observing bending via an optical detection method. This piezoelectric cantilever device was designed to be incorporated into body-on-a-chip systems.

Copyright

Corresponding author

Address all correspondence to James J. Hickman at jhickman@ucf.edu

References

Hide All
1.Fritz, J.. Cantilever biosensors. Analyst 133, 855 (2008).
2.Oleaga, C., Bernabini, C., Smith, A.S.T., Srinivasan, B., Jackson, M., McLamb, W., Platt, V., Bridges, R., Cai, Y., Santhanam, N., Berry, B., Najjar, S., Akanda, N., Guo, X., Martin, C., Ekman, G., Esch, M.B., Langer, J., Ouedraogo, G., Cotovio, J., Breton, L., Shuler, M.L., and Hickman, J.J.: Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).
3.Stancescu, M., Molnar, P., McAleer, C.W., McLamb, W., Long, C.J., Oleaga, C., Prot, J.-M., and Hickman, J.J.: A phenotypic in vitro model for the main determinants of human whole heart function. Biomaterials 60, 20 (2015).
4.Oleaga, C., Riu, A., Rothemund, S., Lavado, A., McAleer, C.W., Long, C.J., Persaud, K., Narasimhan, N.S., Tran, M., and Roles, J.: Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182, 176 (2018).
5.Smith, A., Long, C., Pirozzi, K., Najjar, S., McAleer, C., Vandenburgh, H., and Hickman, J.: A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro. J. Biotechnol. 185, 15 (2014).
6.Deng, J., Qu, Y., Liu, T., Jing, B., Zhang, X., Chen, Z., Luo, Y., Zhao, W., Lu, Y., and Lin, B.: Recent organ-on-a-chip advances toward drug toxicity testing. Microphysiol. Syst 2, 8 (2018).
7.Wilson, K., Molnar, P., and Hickman, J.J.: Integration of functional myotubes with a Bio-MEMs device for non-invasive interrogation. Lab Chip 7, 920922 (2007).
8.Esch, M.B., Smith, A.S., Prot, J.-M., Oleaga, C., Hickman, J.J., and Shuler, M.L.: How multi-organ microdevices can help foster drug development. Adv. Drug Del. Rev. 69, 158 (2014).
9.Sung, J.H., Srinivasan, B., Esch, M.B., McLamb, W.T., Bernabini, C., Shuler, M.L., and Hickman, J.J.: Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 239, 1225 (2014).
10.Lee, J.H., Hwang, K.S., Park, J., Yoon, K.H., Yoon, D.S., and Kim, T.S.: Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20, 2157 (2005).
11.Isarakorn, D., Linder, M., Briand, D., and De Rooij, N.F.: Evaluation of static measurement in piezoelectric cantilever sensors using a charge integration technique for chemical and biological detection. Meas. Sci. Technol. 21, 075801 (2010).
12.Mohammadi, V., Mohammadi, S., and Barghi, F.: Piezoelectric Materials and Devices-Practice and Applications. In Piezoelectric Materials and Devices-Practice and Applications, edited by Farzad Ebrahami, (IntechOpen, Rijeka, Croatia, 2013).
13.Ali, J., Najeeb, J., Ali, M.A., Aslam, M.F., and Raza, A.: Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J. Biosens. Bioelectron. 8, 235 (2017).
14.Sangeetha, P. and Juliet, A.V.: MEMS cantilever based immunosensors for biomolecular recognition. Int. J. Comput. Technol. Electron. Eng 2(1), 109114.
15.Johnson, B.N. and Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron. 32, 1 (2012).
16.Tadigadapa, S. and Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 092001 (2009).
17.Das, M., Gregory, C.A., Molnar, P., Riedel, L.M., Wilson, K., and Hickman, J.J.: A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures. Biomaterials 27, 4374 (2006).
18.Colón, A., Guo, X., Akanda, N., Cai, Y., and Hickman, J.J.: Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci. Rep. 7, 17202 (2017).
19.Rumsey, J.W., Das, M., Bhalkikar, A., Stancescu, M., and Hickman, J.J.: Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers. Biomaterials 31, 8218 (2010).
20.Barkam, S., Saraf, S., and Seal, S.: Fabricated micro-nano devices for in vivo and in vitro biomedical applications. WIRES Nanomed. Nanobi. 5, 544 (2013).
21.Chorsi, M.T., Curry, E.J., Chorsi, H.T., Das, R., Baroody, J., Purohit, P.K., Ilies, H., and Nguyen, T.D.: Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 1802084 (2019).
22.Frias, C., Reis, J., e Silva, F.C., Potes, J., Simões, J., and Marques, A.: Piezoelectric actuator: searching inspiration in nature for osteoblast stimulation. Compos. Sci. Technol. 70, 1920 (2010).
23.Mota, C., Labardi, M., Trombi, L., Astolfi, L., D'Acunto, M., Puppi, D., Gallone, G., Chiellini, F., Berrettini, S., Bruschini, L., and Danti, S.: Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Mater. Design. 122, 206 (2017).
24.Das, M., Wilson, K., Molnar, P., and Hickman, J.J.: Differentiation of skeletal muscle and integration of myotubes with silicon microstructures using serum-free medium and a synthetic silane substrate. Nat. Protoc. 2, 1795 (2007).
25.Natarajan, A., Stancescu, M., Dhir, V., Armstrong, C., Sommerhage, F., Hickman, J.J., and Molnar, P.: Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials 32, 4267 (2011).
26.Wilson, K., Das, M., Wahl, K.J., Colton, R.J., and Hickman, J.J.: Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE 5, e11042 (2010).
27.Oleaga, C., Lavado, A., Riu, A., Rothemund, S., Carmona-Moran, C.A., Persaud, K., Yurko, A., Lear, J., Narasimhan, N.S., and Long, C.J.. Long-term electrical and mechanical function monitoring of a human-on-a-chip system. Adv. Funct. Mater. 29, 1805792 (2019).
28.McAleer, C., Long, C., Elbrecht, D., Sasserath, T., Bridges, L., Rumsey, J., Martin, C., Schnepper, M., Wang, Y., Schuler, F., Roth, A., Funk, C., Shuler, M., and Hickman, J.: Multi-organ system for the evaluation of anti-cancer therapeutics on efficacy and off-target toxicity. Sci. Trans. Med 11(497), eaav1386 (2019).
29.Pirozzi, K., Long, C., McAleer, C., Smith, A., and Hickman, J.: Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device. Appl. Phys. Lett. 103, 083108 (2013).
30.McAleer, C.W., Smith, A.S., Najjar, S., Pirozzi, K., Long, C.J., and Hickman, J.J.: Mechanistic investigation of adult myotube response to exercise and drug treatment in vitro using a multiplexed functional assay system. J. Appl. Physiol. 117, 1398 (2014).
31.Grosberg, A., Alford, P.W., McCain, M.L., and Parker, K.K.: Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11, 4165 (2011).
32.Liu, W., Feng, Z., Liu, R., and Zhang, J.: The influence of preamplifiers on the piezoelectric sensor's dynamic property. Rev. Sci. Instrum. 78, 125107 (2007).
33.Haring, A.P., Sontheimer, H., and Johnson, B.N.: Microphysiological human brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem Cell Rev. Rep. 13, 381 (2017).
34.Luni, C., Serena, E., and Elvassore, N.: Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotech. 25, 45 (2014).
Type Description Title
WORD
Supplementary materials

Coln et al. supplementary material
Figure S1

 Word (133 KB)
133 KB

Piezoelectric bioMEMS cantilever for measurement of muscle contraction and for actuation of mechanosensitive cells

  • Elizabeth A. Coln (a1) (a2), Alisha Colon (a1), Christopher J. Long (a3), Narasimhan Narasimhan Sriram (a3), Mandy Esch (a4), Jean-Matthieu Prot (a4), Daniel H. Elbrecht (a1), Ying Wang (a4), Max Jackson (a3), Michael L. Shuler (a3) (a4) and James J. Hickman (a1) (a2) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed