Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T05:12:32.407Z Has data issue: false hasContentIssue false

Photonic flash sintering of silver nanoparticle inks: a fast and convenient method for the preparation of highly conductive structures on foil

Published online by Cambridge University Press:  10 December 2012

Robert Abbel
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Tim van Lammeren
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Rob Hendriks
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Jeroen Ploegmakers
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Eric J. Rubingh
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Erwin R. Meinders
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Wilhelm A. Groen*
Affiliation:
Holst Centre – TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands; Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
*
Address all correspondence to Wilhelm A. Groen atpim.groen@tno.nl
Get access

Abstract

Silver nanoparticle inks printed on temperature-sensitive substrates can be converted into structures with high electrical conductivities within fractions of a second by photonic flash sintering. The key principle is the selective heating of the ink by the absorption of strongly focused pulsed light for which the substrate is transparent. The influence of process parameters like intensity and flashing frequency on the sintering speed is investigated. Furthermore, a setup is demonstrated for monitoring the temperature development in an ink during flash sintering, revealing that the substrate's glass transition point is exceeded only for very short time intervals, which prevents deformation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kamyshny, A., Steinke, J., and Magdassi, S.: Metal-based Inkjet Inks for Printed Electronics. Open Appl. Phys. J. 4, 19 (2011).Google Scholar
2. Habas, S.E., Platt, H.A.S., van Heest, M.F.A.M., and Ginley, D.S.: Low-Cost Inorganic Solar Cells: From Ink to Printed Device. Chem. Rev. 110, 6571 (2010).Google Scholar
3. Harkema, S., Mennema, S., Barink, M., Rooms, H., Wilson, J.S., van Mol, T., and Bollen, D.: Large Area ITO-free Flexible White OLEDs with OrgaconTM PEDOT:PSS and Printed Metal Shunting Lines. Proc. SPIE 7415, 74150T (2009).Google Scholar
4. Galagan, Y., Rubingh, J.J.M., Andriessen, R., Fan, C., Blom, P.W.M., Veenstra, S.C., and Kroon, J.M.: ITO-free flexible organic solar cells with printed current collecting grids. Sol. En. Mater. Sol. Cells 95, 1339 (2011).CrossRefGoogle Scholar
5. Galagan, Y., Zimmermann, B., Coenen, E.W.C., Jorgensen, M., Tanenbaum, D.M., Krebs, F.C., Gorter, H., Sabik, S., Slooff, L.H., Veenstra, S.C., Kroon, J.M., and Andriessen, R.: Current Collecting Grids for ITO-Free Solar Cells. Adv. En. Mater. 2, 103 (2012).Google Scholar
6. Krebs, F.C.: All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electr. 10, 761 (2009).Google Scholar
7. Manceau, M., Angmo, D., Jorgensen, M., and Krebs, F.C.: ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules. Org. Electr. 12, 566 (2011).CrossRefGoogle Scholar
8. Denneulin, A., Blayo, A., Neuman, C., and Bras, J.: Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. J. Nanopart. Res. 13, 3815 (2011).Google Scholar
9. Reinhold, I., Hendriks, C.E., Eckardt, R., Kranenburg, J.M., Perelaer, J., Baumann, R.R., and Schubert, U.S.: Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19, 3384 (2009).Google Scholar
10. Wakuda, D., Hatamura, M., and Suganuma, K.: Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem. Phys. Lett. 441, 305 (2007).Google Scholar
11. Layani, M. and Magdassi, S.: Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature. J. Mater. Chem. 21, 15378 (2011).Google Scholar
12. Wakuda, D., Kim, K., and Suganuma, K.: Room-Temperature Sintering Process of Ag Nanoparticle Paste. IEEE Trans. Comp. Pack. Techn. 32, 627 (2009).Google Scholar
13. Grouchko, M., Kamyshny, A., Mihailescu, C.F., Anghel, D.F., and Magdassi, S.: Conductive Inks with a “Built-In” Mechanism That Enables Sintering at Room Temperature. ACS Nano 5, 3354 (2011).Google Scholar
14. Perelaer, J., de Gans, B., and Schubert, U.S.: Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks. Adv. Mater. 18, 2101 (2006).CrossRefGoogle Scholar
15. Perelaer, J., Klokkenburg, M., Hendriks, C.E., and Schubert, U.S.: Microwave Flash Sintering of Inkjet-Printed Silver Tracks on Polymer Substrates. Adv. Mater. 21, 4830 (2009).Google Scholar
16. Allen, M., Alastalo, A., Suhonen, M., Mattila, T., Leppäniemi, J., and Seppä, H.: Contactless Electrical Sintering of Silver Nanoparticles on Flexible Substrates. IEEE Trans. Microwave Theor. Techn. 59, 1419 (2011).Google Scholar
17. Allen, M.L., Aronniemi, M., Mattila, T., Alastalo, A., Ojanperä, K., Suhonen, M., and Seppä, H.: Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008).CrossRefGoogle ScholarPubMed
18. Chiolerio, A., Maccioni, G., Martino, P., Cotto, M., Pandolfi, P., Rivolo, P., Ferrero, S., and Scaltrito, L.: Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microel. Engin. 88, 2481 (2011).Google Scholar
19. Kumpulainen, T., Pekkanen, J., Valkama, J., Laakso, J., Tuokko, R., and Mäntysalo, M.: Low temperature nanoparticle sintering with continuous wave and pulse lasers. Optics Laser Techn. 43, 570 (2011).Google Scholar
20. Yoon, Y.H., Yi, S., Yim, J., Lee, J., Rozgonyi, G., and Joo, Y.: Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films. Microel. Engin. 87, 2230 (2010).Google Scholar
21. Marjanovic, N., Hammerschmidt, J., Perelaer, J., Farnsworth, S., Rawson, I., Kus, M., Yenel, E., Tilki, S., Schubert, U.S., and Baumann, R.R.: Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes. J. Mater. Chem. 21, 13634 (2011).Google Scholar
22. Kim, H., Dhage, S.R., Shim, D., and Hahn, H.T.: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97, 791 (2009).Google Scholar
23. Yung, K.C., Gu, X., Lee, C.P., and Choy, H.S.: Ink-jet printing and camera flash sintering of silver tracks on different substrates. J. Mater. Proc. Techn. 210, 2268 (2010).Google Scholar
24. Han, W., Hong, J., Kim, H., and Song, Y.: Multi-pulsed white light sintering of printed Cu nanoinks. Nanotechnology 22, 395705 (2011).Google Scholar
25. Hösel, M. and Krebs, F.C.: Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. J. Mater. Chem. 22, 15683 (2012).Google Scholar
26. Galagan, Y., Coenen, E.W.C., Abbel, R., van Lammeren, T.J., Sabik, S., Barink, M., Meinders, E.R., Andriessen, R., Blom, P.W.M.: Photonic sintering of inkjet printed current collecting grids for organic solar cell applications. Org. Electron. 14, 38 (2012).Google Scholar
27. Abbel, R., van den Boomen, J., van Lammeren, T.J., de Koning, T., Valeton, J.J.P., Meinders, E.R.: Current Collecting Grids for R2R Processed Organic Solar Cells. Proc. MRS Spring Meeting 2011 1323, c03–38 (2011).Google Scholar
Supplementary material: File

Groen Supplementary Material

Appendix

Download Groen Supplementary Material(File)
File 955.4 KB