Skip to main content Accessibility help

Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction

  • Adriana Valério (a1), Rafaela F.S. Penacchio (a1), Maurício B. Estradiote (a1), Marli R. Cantarino (a1), Fernando A. Garcia (a1), Sérgio L. Morelhão (a1), Niamh Rafter (a2), Stefan W. Kycia (a2), Guilherme A. Calligaris (a3) and Cláudio M.R. Remédios (a4)...


Engineering of thermoelectric materials requires an understanding of thermal conduction by lattice and electronic degrees of freedom. Filled skutterudites denote a large family of materials suitable for thermoelectric applications where reduced lattice thermal conduction attributed to localized low-frequency vibrations (rattling) of filler cations inside large cages of the structure. In this work, a multi-wavelength method of exploiting x-ray dynamical diffraction in single crystals of CeFe4P12 is presented and applied to resolve the atomic amplitudes of vibrations. The results suggest that the vibrational dynamics of the whole filler-cage system is the actual active mechanism behind the optimization of thermoelectric properties.


Corresponding author

Address all correspondence to Sérgio L. Morelhão at


Hide All
1.Snyder, J.G. and Toberert, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).
2.McGaughey, A.J.H., Jain, A., Kim, H.-Y., and Fu, B.: Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation featured. J. Appl. Phys. 125, 011101 (2019).
3.Zhu, Y., Liu, Y., Wood, M., Koocher, N.Z., Liu, Y., Liu, L., Hu, T., Rondinelli, J.M., Hong, J., Snyder, G.J., and Xu, W.: Synergistically optimizing carrier concentration and decreasing sound velocity in n-type AgInSe2 thermoelectrics. Chem. Mater. 31, 8182 (2019).
4.Luo, Z.-Z., Cai, S., Hao, S., Bailey, T.P., Hu, X., Hanus, R., Ma, R., Tan, G., Chica, D.G., Snyder, G.J., Uher, C., Wolverton, C., Dravid, V.P., Yan, Q., and Kanatzidis, M.G.: Ultralow thermal conductivity and high-temperature thermoelectric performance in n-type K2.5Bi8.5Se14. Chem. Mater. 31, 5943 (2019).
5.Slade, T.J., Bailey, T.P., Grovogui, J.A., Hua, X., Zhang, X., Kuo, J.J., Hadar, I., Snyder, G.J., Wolverton, C., Dravid, V.P., Uher, C., and Kanatzidis, M.G.: High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv. Energy Mater. 9, 1901377 (2019).
6.Shi, Y., Mashmoushi, N., Wegner, W., Jafarzadeh, P., Sepahi, Z., Assouda, A., and Kleinke, H.: Ultralow thermal conductivity of Tl4Ag18Te11. J. Mater. Chem. C 7, 8029 (2019).
7.Liu, H., Liu, J., Jing, R., and You, C.: Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes. MRS Commun. 9, 1311 (2019).
8.Ding, J., Niedziela, J.L., Bansal, D., Wang, J., He, X., May, A.F., Ehlers, G., Abernathy, D.L., Said, A., Alatas, A., Ren, Y., Arya, G., and Delaire, O.: Anharmonic lattice dynamics and superionic transition in AgCrSe2. Proc. Natl. Acad. Sci. USA 117, 3930 (2020).
9.Gurunathan, R., Hanus, R., Dylla, M., Katre, A., and Snyder, G.J.: Analytical models of phonon–point-defect scattering. Phys. Rev. Appl. 13, 034011 (2020).
10.Imasato, K., Fu, C., Pan, Y., Wood, M., Kuo, J.J., Felser, C., and Snyder, G.J.: Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 32, 1908218 (2020).
11.Hermann, R.P., Grandjean, F., and Long, G.J.: Einstein oscillators that impede thermal transport. Am. J. Phys. 73, 110 (2005).
12.Jeitschko, W. and Braun, D.: LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Cryst. B 33, 3401 (1977).
13.Elsheikh, M.H., Sabri, M.F.M., Said, S.M., Miyazaki, Y., Masjuki, H., Shnawah, D.A., Naito, S., and Bashir, M.B.A.: Rapid preparation of bulk AlxYb0.25Co4Sb12 (x = 0, 0.1, 0.2, 0.3) skutterudite thermoelectric materials with high figure of merit ZT = 1.36. J. Mater. Sci. 52, 5324 (2017).
14.Chen, F., Liu, R., Yao, Z., Xing, Y., Bai, S., and Chen, L.: Scanning laser melting for rapid and massive fabrication of filled skutterudites with high thermoelectric performance. J. Mater. Chem. A 6, 6772 (2018).
15.Hudak, B.M., Sun, W., Mackey, J., Ullah, A., Sehirlioglu, A., Dynys, F., Pantelides, S.T., and Guiton, B.S.: Observation of square-planar distortion in lanthanide-doped skutterudite crystals. J. Phys. Chem. C 123, 14632 (2019).
16.Yu, J., Zhu, W., Zhao, W., Luo, Q., Liu, Z., and Chen, H.: Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. J. Mater. Sci. 55, 7432 (2020).
17.Bashir, M.B.A., Sabri, M.F.M., Said, S.M., Miyazaki, Y., Badruddin, I.A., Shnawah, D.A.A., Salih, E.Y., Abushousha, S., and Elsheikh, M.H.: Enhancement of thermoelectric properties of Co4Sb12 skutterudite by Al and La double filling. J. Solid State Chem. 284, 121205 (2020).
18.Jiang, J., Zhu, H., Niu, Y., Zhu, Q., Song, S., Zhou, T., Wang, C., and Ren, Z.: Achieving high room-temperature thermoelectric performance in cubic AgCuTe. J. Mater. Chem. A 8, 4790 (2020).
19.Yang, J., Meisner, G.P., Morelli, D.T., and Uher, C.: Iron valence in skutterudites: transport and magnetic properties of Co1−xFexSb3. Phys. Rev. B 63, 014410 (2000).
20.Cao, D., Bridges, F., Chesler, P., Bushart, S., Bauer, E.D., and Maple, M.B.: Evidence for rattling behavior of the filler atom (L) in the filled skutterudites LT4X12 (L = Ce, Eu, Yb; T = Fe, Ru; X = P, Sb) from EXAFS studies. Phys. Rev. B 70, 094109 (2004).
21.Koza, M.M., Johnson, M.R., Viennois, R., Mutka, H., Girard, L., and Ravot, D.: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat Mater. 7, 805 (2008).
22.Parks, H.L., McGaughey, A.J.H., and Viswanathan, V.: Uncertainty quantification in first-principles predictions of harmonic vibrational frequencies of molecules and molecular complexes. J. Phys. Chem. C 123, 4072 (2019).
23.Liu, Z., Zhu, W., Nie, X., and Zao, W.: Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. J. Mater. Sci. Mater. Electron. 30, 12493 (2019).
24.Menasche, D.B., Shade, P.A., and Suter, R.M.: Accuracy and precision of near-field high-energy diffraction microscopy forward-model-based microstructure reconstructions. J. Appl. Cryst. 53, 107 (2020).
25.Shen, Y.-F., Maddali, S., Menasche, D., Bhattacharya, A., Rohrer, G.S., and Suter, R.M.: Importance of outliers: a three-dimensional study of coarsening in a-phase iron. Phys. Rev. Mater. 3, 063611 (2019).
26.Shiraishi, Y., Tanabe, K., Taniguchi, H., Okazaki, R., and Terasaki, I.: Interplay between quantum paraelectricity and thermoelectricity in the photo-Seebeck effect in a SrTiO3 single crystal featured. J. Appl. Phys. 126, 045111 (2019).
27.Grandjean, F., Gérard, A., Braung, D.J., and Jeitschko, W.: Some physical properties of LaFe4P12 type compounds. J. Phys. Chem. Solids 45, 877 (1984).
28.Roman, G., Horst, B., Alim, O., Helge, R., Walter, S., Michael, N., Yuri, G., and Andreas, L.-J.: Filled platinum germanium skutterudites MPt4Ge12 (M = Sr, Ba, La–Nd, Sm, Eu): crystal structure and chemical bonding. Z. Krist.-Cryst. Mater. 225, 531 (2010).
29.Morelhão, S.L. and Avanci, L.H.: Strength tuning of multiple waves in crystals. Acta Cryst. A 57, 192 (2001).
30.Morelhão, S.L. and Kycia, S.: Enhanced X-ray phase determination by three-beam diffraction. Phys. Rev. Lett. 89, 015501 (2002).
31.Morelhão, S.L.: An X-ray diffractometer for accurate structural invariant phase determination. J. Synchrotron Radiat. 10, 236 (2003).
32.Morelhão, S.L.: Accurate triplet phase determination in non-perfect crystals – a general phasing procedure. Acta Cryst. A 59, 470 (2003).
33.Morelhão, S.L., Avanci, L.H., and Kycia, S.: Study of crystalline structures via physical determination of triplet phase invariants. Nucl. Instrum. Meth. B 238, 175 (2005).
34.Morelhão, S.L., Avanci, L.H., and Kycia, S.: Automatic X-ray crystallographic phasing at LNLS. Nucl. Instrum. Meth. B 238, 180 (2005).
35.Morelhão, S.L., Avanci, L.H., and Kycia, S.: Energy conservation in approximated solutions of multi-beam scattering problems. Nucl. Instrum. Meth. B 239, 245 (2005).
36.Wu, J., Leinenweber, K., Spence, J.C.H., and O'Keeffe, M.: Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat. Mater. 5, 647 (2006).
37.Amirkhanyan, Z.G., Remédios, C.M.R., Mascarenhas, Y.P., and Morelhão, S.L.: Analyzing structure factor phases in pure and doped single crystals by synchrotron X-ray Renninger scanning. J. Appl. Cryst 47, 160 (2014).
38.Morelhão, S.L., Amirkhanyan, Z.G., and Remédios, C.M.R.: Absolute refinement of crystal structures by X-ray phase measurements. Acta Cryst. A 71, 291 (2015).
39.Morelhão, S.L., Remédios, C.M.R., Calligaris, G.A., and Nisbet, G.: X-ray dynamical diffraction in amino acid crystals: a step towards improving structural resolution of biological molecules via physical phase measurements. J. Appl. Cryst. 50, 689 (2017).
40.Morelhão, S.L., Remédios, C.M.R., Freitas, R.O., and dos Santos, A.O.: X-ray phase measurements as a probe of small structural changes in doped nonlinear optical crystals. J. Appl. Cryst. 44, 93 (2011).
41.Sato, H., Abe, Y., Okada, H., Matsuda, T. D., Abe, K., Sugawara, H., and Aoki, Y.: Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd). Phys. Rev. B 62, 15125 (2000).
42.Matsunami, M., Horiba, K., Taguchi, M., Yamamoto, K., Chainani, A., Takata, Y., Senba, Y., Ohashi, H., Yabashi, M., Tamasaku, K., Nishino, Y., Miwa, D., Ishikawa, T., Ikenaga, E., Kobayashi, K., Sugawara, H., Sato, H., Harima, H., and Shin, S.: Electronic structure of semiconducting CeFe4P12: strong hybridization and relevance of single-impurity Anderson model. Phys. Rev. B 77, 165126 (2008).
43.Garcia, F.A., Venegas, P.A., Pagliuso, P.G., Rettori, C., Fisk, Z., Schlottmann, P., and Oseroff, S.B.: Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite. Phys. Rev. B 84, 125116 (2011).
44.Venegas, P.A., Garcia, F.A., Garcia, D.J., Cabrera, G.G., Avila, M.A., and Rettori, C.: Collapse of the Gd3+ ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeFe4P12. Phys. Rev. B 94, 235143 (2016).
45.Morelhão, S.L., Kycia, S., Netzke, S., Fornari, C.I., Rappl, P.H.O., and Abramof, E.: Hybrid reflections from multiple X-ray scattering in epitaxial bismuth telluride topological insulator films. Appl. Phys. Lett. 112, 101903 (2018).
46.Morelhão, S.L., Kycia, S.W., Netzke, S., Fornari, C.I., Rappl, P.H.O., and Abramof, E.: Dynamics of defects in van der Waals epitaxy of bismuth telluride topological insulators. J. Phys. Chem. C 123, 24818 (2019).
47.Weckert, E. and Hummer, K.: Multiple-beam X-ray diffraction for physical determination of reflection phases and its applications. Acta Cryst. A 53, 108 (1997).
48.Avanci, L.H., Hayashi, M.A., Cardoso, L.P., Morelhão, S.L., Riesz, F., Rakennus, K., and Hakkarainen, T.: Mapping of Bragg-surface diffraction of InP/GaAs(100) structure. J. Cryst. Growth 188, 220 (1998).
49.Freitas, R.O., Morelhão, S.L., Avanci, L.H., and Quivy, A.A.: Strain field of InAs QDs on GaAs (001) substrate surface: characterization by synchrotron X-ray Renninger scanning. Microelectron. J. 36, 219 (2005).
50.Freitas, R.O., Lamas, T.E., Quivy, A.A., and Morelhão, S.L.: Synchrotron X-ray Renninger scanning for studying strain in InAs/GaAs quantum dot system. Phys. Status Solidi A 204, 2548 (2007). Menezes, A.S., dos Santos, A.O., Almeida, J.M.A., Bortoleto, J.R.R., Cotta, M.A., Morelhão, S.L., and Cardoso, L.P.: Direct observation of tetragonal distortion in epitaxial structures through secondary peak split in a synchrotron radiation Renninger scan. Cryst. Growth Des. 10, 3426 (2010).
52.Avanci, L.H., Cardoso, L.P., Girdwood, S.E., Pugh, D., Sherwood, J.N., and Roberts, K.J.: Piezoelectric coefficients of mNA organic nonlinear optical material using synchrotron X-ray multiple diffraction. Phys. Rev. Lett. 81, 5426 (1998).
53.Morelhão, S.L.: Computer Simulation Tools for X-ray Analysis, 1st ed. (Springer International Publishing, Cham, 2016), pp. 2444.
54.Domagała, J.Z., Morelhão, S.L., Sarzyński, M., Maździarz, M., Dłuzewski, P., and Leszczyński, M.: Hybrid reciprocal lattice: application to layer stress determination in GaAlN/GaN(0001) systems with patterned substrates. J. Appl. Cryst. 49, 798 (2016).
Type Description Title
Supplementary materials

Valério et al. supplementary material
Valério et al. supplementary material

 PDF (1.8 MB)
1.8 MB

Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction

  • Adriana Valério (a1), Rafaela F.S. Penacchio (a1), Maurício B. Estradiote (a1), Marli R. Cantarino (a1), Fernando A. Garcia (a1), Sérgio L. Morelhão (a1), Niamh Rafter (a2), Stefan W. Kycia (a2), Guilherme A. Calligaris (a3) and Cláudio M.R. Remédios (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.