Skip to main content Accessibility help
×
Home

One-pot solvothermal preparation of S-doped BiOBr microspheres for efficient visible-light induced photocatalysis

  • Xia Li (a1), Guohua Jiang (a1), Zhen Wei (a1), Xiaohong Wang (a1), Wenxing Chen (a1) and Liang Shen (a2)...

Abstract

The S-doped BiOBr composite microspheres were successfully prepared through one-pot solvothermal method. The as-prepared samples exhibit higher photocatalytic activity for the degradation of Rhodamine B and phenol under visible light irradiation, attributed to the improvement of the photo-absorption property and the narrow band gap due to the dopants of S element. The higher efficiency for photodegradation of organic pollutant endows this material with a bright perspective in purification of waste water under visible-light irradiation.

Copyright

Corresponding author

*Address all correspondence to Guohua Jiang atghjiang_cn@aliyun.com

References

Hide All
1.Tian, H., Gao, J., Lu, L., Zhao, D., Cheng, K., and Qiu, P.: Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environ. Sci. Technol. 46, 10364 (2012).
2.Gondal, M., Chang, X., Ali, M.A., Zain, H.Y., Zhou, Q., and Ji, G.: Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532 nm pulsed laser exposure. Appl. Catal. A 397, 192 (2011).
3.Pandikumar, A., Murugesan, S., and Ramaraj, R.: Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity. ACS Appl. Mater. Interfaces 2, 1912 (2010).
4.Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., and Chen, W.: Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 4154 (2011).
5.Hameda, T., Bayraktar, E., Mehmetoğlu, U., and Mehmetoğlu, T.: The biodegradation of benzene, toluene and phenol in a two phase system. Biochem. Eng. J. 19, 137 (2004).
6.Sun, Z., Kim, J., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y., and Dou, S.: Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314 (2011).
7.Jiang, G., Zheng, X., Wang, Y., Li, T., and Sun, X.: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol. 207, 465 (2011).
8.Hoffmann, M., Martin, S., Choi, W., and Bahnemann, D.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).
9.Jiang, G., Wang, X., Wei, Z., Li, X., Xi, X., Hu, R., Tang, B., Wang, R., Wang, S., Wang, T., and Chen, W.: Photocatalytic property of hierarchical structure based on Fe-doped BiOBr hollow microspheres. J. Mater. Chem. A 1, 2406 (2013).
10.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
11.Wang, S., Wang, T., Chen, W., and Hori, T.: Phase-selectivity photocatalysis: a new approach in organic pollutants' photodecomposition by nanovoid core(TiO2)/shell(SiO2) nanoparticles. Chem. Commun. 32, 3756 (2008).
12.Jiang, G., Wang, R., Jin, H., Wang, Y., Sun, X., Wang, S., and Wang, T.: Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technol. 212, 284 (2011).
13.Jiang, G., Wang, X., Zhou, Y., Wang, R., Hu, R., Xi, X., and Chen, W.: Hollow TiO2 nanocages with rubik-like structure for high-performance photocatalysts. Mater. Lett. 89, 59 (2012).
14.Guo, W., Zhang, F., Lin, C., and Wang, L.: Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 24, 4761 (2012).
15.Wang, E., He, T., Zhao, L., Chen, Y., and Cao, Y.: Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J. Mater. Chem. 21, 144 (2011).
16.Ghicov, A., Schmidt, B., Kunze, J., and Schmuki, P.: Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem. Phys. Lett. 433, 323 (2007).
17.Wu, D., Long, M., Cai, W., Chen, C., and Wu, Y.: Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity. J. Alloys Compd. 502, 289 (2010).
18.Su, W., Wang, J., Huang, Y., Wang, W., Wu, L., Wang, X., and Liu, P.: Synthesis and catalytic performances of a novel photocatalyst BiOF. Scripta Mater. 62, 345 (2010).
19.Zhang, X., Ai, Z., Jia, F., and Zhang, L.: Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747 (2008).
20.Xia, J., Yin, S., Li, H., Xu, H., Xu, L., and Xu, Y.: Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans. 40, 5249 (2011).
21.Xu, J., Meng, W., Zhang, Y., Li, L., and Guo, C.: Simple solvothermal routes to synthesize 3D BiOBrxI1−x microspheres and their visible-light-induced photocatalytic properties. Ind. Eng. Chem. Res. 50, 6688 (2011).
22.Cheng, H., Huang, B., Wang, Z., Qin, X., Zhang, X., and Dai, Y.: Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and pathway. Appl. Catal. B 107, 355 (2011).
23.Fang, Y., Huang, Y., Yang, J., Wang, P., and Cheng, G.: Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water. Environ. Sci. Technol. 45, 1593 (2011).
24.Feng, Y., Li, L., Li, J., Wang, J., and Liu, L.: Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. J. Hazard. Mater. 192, 538 (2011).
25.Song, S., Gao, W., Wang, X., Li, X., Liu, D., Xing, Y., and Zhang, H.: Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Trans. 41, 10472 (2012).
26.Cheng, H., Huang, B., Wang, P., Wang, Z., Lou, Z., Wang, J., Qin, X., Zhang, X., and Dai, Y.: In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 47, 7054 (2011).
27.Wang, R., Jiang, G., Wang, X., Hu, R., Xi, X., Bao, S., Zhou, Y., Tong, T., Wang, S., Wang, T., and Chen, W.: Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Powder Technol. 228, 258 (2012).
28.Jiang, G., Wang, R., Wang, X., Xi, X., Hu, R., Zhou, Y., Wang, S., Wang, T., and Chen, W.: Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl. Mater. Interfaces 4, 4440 (2012).
29.Fu, J., Tian, Y., Chang, B., Xi, F., and Dong, X.: BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J. Mater. Chem. 22, 21159 (2012).
30.Ye, L., Liu, J., Gong, C., Tian, L., Peng, T., and Zan, L.: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z scheme bridge. ACS Catal. 2, 1677 (2012).
31.Kong, L., Jiang, Z., Lai, H., Nicholls, R., Xiao, T., Jones, M., and Edwards, P.: Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts. J. Catal. 293, 116 (2012).
32.Guo, W., Shen, Y., Wu, L., Gao, Y., and Ma, T.: Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. J. Phys. Chem. C 115, 21494 (2011).
33.Sanaa, S., Uvarov, I., Fronton, S., Popov, I., and Sasson, Y.: A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J. Phys. Chem. C 116, 11004 (2012).
34.Kong, L., Jiang, Z., Xiao, T., Lu, L., Jones, M., and Edwards, P.: Exceptional visible-light-driven photocatalytic activity over BiOBr-ZnFe2O4 heterojunctions. Chem. Commun. 47, 5512 (2011).
35.Shan, Z., Wang, W., Lin, X., Ding, H., and Huang, F.: Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br. J. Solid State Chem. 181, 1361 (2008).
36.Wei, Z., Jiang, G., Shen, L., Li, X., Wang, X., and Chen, W.: Preparation of Mn-dopped BiOBr Microspheres for Efficient Visible-Light Induced Photocatalysis. MRS Commun. DOI: 10.1557/mrc.2013.29 (2013).
37.Liu, G., Yang, H.G., Wang, X., Cheng, L., Pan, J., (Max) Lu, G. Q., and Cheng, H.-M.: Visible light responsive nitrogen doped anatase TiO2 sheets with {001} facets derived from TiN. J. Am. Chem. Soc. 131, 12868 (2009).
38.Chen, X. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).
39.Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., and Mitsui, T.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 265, 115 (2004).
40.Bidaye, P.P., Khushalani, D., and Fernandes, J.B.: A simple method for synthesis of S-doped TiO2 of high photocatalytic activity. Catal. Lett. 134, 169 (2010).
41.Zhao, Z., Sun, Z., Zhao, H., Zheng, M., Du, P., Zhao, J., and Fan, H.: Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J. Mater. Chem. 22, 21965 (2012).
42.Zhang, K., Liang, J., Wang, S., Liu, J., Ren, K., Zheng, X., Luo, H., Peng, Y., Zou, X., Bo, X., Li, J., and Yu, X.: BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst. Growth Des. 12, 793 (2012).
43.Chen, L., Yin, S.-F., and Luo, S.-L.: Bi2O2CO3/BiOI photocatalysts with heterojunctions highly effcient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 51, 6760 (2012).
44.Wang, W., Wang, D., Qu, W., Lu, L., and Xu, A.: Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 37, 19893 (2012).
45.Wang, F., Valentin, C.D., and Pacchioni, G.: Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J. Phys. Chem. C 116, 8901 (2012).
46.Czoska, A.M., Livraghi, S., Chiesa, M., Giamello, E., Agnoli, S., Granozzi, G., Finazzi, E., Valentin, C.D., and Pacchioni, G.: The nature of defects in fluorine-doped TiO2. J. Phys. Chem. C 112, 8951 (2008).
Type Description Title
WORD
Supplementary materials

Li Supplementary Materials
Supplementary Materials

 Word (19.2 MB)
19.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed