Skip to main content Accessibility help
×
Home

Observation and characterization of memristive silver filaments in amorphous zinc-tin-oxide

  • Hiep N. Tran (a1), Thomas J. Raeber (a2), Zijun C. Zhao (a3), David R. McKenzie (a3), Anthony S. Holland (a1), Dougal G. McCulloch (a2), Billy J. Murdoch (a2) and Jim G. Partridge (a2)...

Abstract

Lateral memristors consisting of planar Ag electrodes (with sub-micrometer separation) supported on thin films of amorphous zinc-tin-oxide have been characterized. After an initial filament-forming process, each device exhibited volatile, resistive switching. In the low resistance state, the transport mechanism and conductance depended on prior activity and on the imposed current limit, mimicking biologic synaptic plasticity. Microscopic observations performed on each device revealed nanoscale filaments between the electrodes. These filaments were subject to Rayleigh instability and exhibited relaxation times determined by their effective radii. The relaxation times and on:off resistance ratios suggest suitability for threshold switching selector devices.

Copyright

Corresponding author

Address all correspondence to Hiep N. Tran at hiep.tranlengoc@rmit.edu.au

References

Hide All
1.Nomura, K., Ohta, H., Takagi, A., Kamiy, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).
2.Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45, 4303 (2006).
3.Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A., Wu, W., Stewart, D.R., and Williams, R.S.: A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 106, 1699 (2009).
4.Dang, G.T., Kawaharamura, T., Furuta, M., and Allen, M.W.: Zinc tin oxide metal semiconductor field effect transistors and their improvement under negative bias (illumination) temperature stress. Appl. Phys. Lett. 110, 073502 (2017).
5.McDowell, M.G., Sanderson, R.J., and Hill, I.G.: Combinatorial study of zinc tin oxide thin-film transistors. Appl. Phys. Lett. 92, 013502 (2008).
6.Murdoch, B.J., McCulloch, D.G., and Partridge, J.G.: Relationship between microstructure and electronic properties of energetically deposited zinc tin oxide. Appl. Phys. Express 9, 065501 (2016).
7.Elzwawi, S., Kim, H.S., Lynam, M., Mayes, E.L.H., McCulloch, D.G., Allen, M.W., and Partridge, J.G.: Stable n-channel metal-semiconductor field effect transistors on ZnO films deposited using a filtered cathodic vacuum arc. Appl. Phys. Lett. 101, 243508 (2012).
8.Rembert, T., Battaglia, C., Anders, A., and Javey, A: Room temperature oxide deposition approach to fully transparent, all-oxide-thin film transistors. Adv. Mater. 27, 6090 (2015).
9.Murdoch, B.J., Ganesan, R., McKenzie, D.R., Bilek, M.M.M., McCulloch, D.G., and Partridge, J.G.: Influence of nitrogen-related defects on optical and electrical behaviour in HfO2− xNx deposited by high-power impulse magnetron sputtering. Appl. Phys. Lett. 107, 112903 (2015).
10.Tran, H.N., Mayes, E.L.H., Murdoch, B.J., McCulloch, D.G., McKenzie, D.R., Bilek, M.M.M., Holland, A.S., and Partridge, J.G.: Codeposition of amorphous zinc tin oxide using high power impulse magnetron sputtering: characterization and doping. Semicond. Sci. Technol. 32, 045013 (2017).
11.Murdoch, B.J., McCulloch, D.G., and Partridge, J.G.: Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces. J. Appl. Phys. 121, 054104 (2017).
12.Elzwawi, S., Hyland, A., Lynam, M., Partridge, J.G., McCulloch, D.G., and Allen, M.W.: Effect of Schottky gate type and channel defects on the stability of transparent ZnO MESFETs. Semicond. Sci. Technol. 30, 024008 (2015).
13.Wang, Z., Rao, M., Midya, R., Joshi, S., Jiang, H., Lin, P., Song, W., Asapu, S., Zhuo, Y., Li, C., Wu, H., Xia, Q., and Joshua Yang, J.: Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28, 1704862 (2018).
14.Longo, E., Cavalcante, L.S., Volanti, D.P., Gouveia, A.F., Longo, V.M., Varela, J.A., Orlandi, M.O., and Andrés, J.: Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Sci. Rep. 3, 1676 (2013).
15.Wang, Z., Joshi, S., Savel'ev, S.E., Jiang, H., Midya, R., Lin, P., Hu, M., Ge, N., Strachan, J.P., Li, Z., Wu, Q., Barnell, M., Li, G-L., Xin, H.L., Williams, R.S., Xia, Q., and Yang, J.J.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101 (2017).
16.Wang, Z.Q., Xu, H.Y., Li, X.H., Yu, H., Liu, Y.C., and Zhu, X.J.: Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 22, 2759 (2012).
17.Murali, S., Rajachidambaram, J.S., Han, S.Y., Chang, C.H., Herman, G.S., and Conley, J.F.: Resistive switching in zinc–tin-oxide. Solid State Electron. 79, 248 (2013).
18.Rajachidambaram, J.S., Murali, S., Conley, J.F., Golledge, S.L., and Herman:, G.S. Bipolar resistive switching in an amorphous zinc tin oxide memristive device. J. Vac. Sci. Technol. B 31, 01A104 (2013).
19.Mayes, E.L.H., Partridge, J.G., Field, M.R., McCulloch, D.G., Durbin, S.M., Kim, H., and Allen, M.W.: The interface structure of high performance ZnO Schottky diodes. Physica B Condens. Matter 407, 2867 (2012).
20.Chiquito, A.J., Amorim, C.A., Berengue, O.M., Araujo, L.S., Bernardo, E.P., and Leite, E.R.: Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. J. Phys. Condens. Matter 24, 225303 (2012).
21.Yaqoob, F. and Huang, M.: Effects of high-dose hydrogen implantation on defect formation and dopant diffusion in silver implanted ZnO crystals. J. Appl. Phys. 120, 045101 (2016).
22.Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293 (1951).
23.Tappertzhofen, S. and Hofmann, S.: Embedded nanoparticle dynamics and their influence on switching behaviour of resistive memory devices. Nanoscale 9, 17494 (2017).
24.Prada, S., Rosa, M., Giordano, L., Di Valentin, C., and Pacchioni, G.: Density functional theory study of TiO2/Ag interfaces and their role in memristor devices. Phys. Rev. B 83, 245314 (2011).
25.Toimil Molares, M.E., Balogh, A.G., Cornelius, T.W., Neumann, R., and Trautmann, C.: Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 85, 5337 (2004).
26.Hsiung, C.P., Liao, H-W, Gan, J-Y, Wu, T-B, Hwang, J-C, Chen, F., and Tsai, M-J: Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 4, 5414 (2010).
27.Zhao, X., Xu, H., Wang, Z., Zhang, L., Ma, J., and Liu, Y.: Nonvolatile/volatile behaviours and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon. N. Y. 91, 38 (2015).
28.Zhu, X., Du, C., Jeong, Y., and Lu, W.D.: Emulation of synaptic metaplasticity in memristors. Nanoscale 9, 45 (2017).
29.Markram, H., Pikus, D., Gupta, A., and Tsodyks, M.: Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37, 489 (1998).
30.La Barbera, S., Vincent, A.F., Vuillaume, D., Querlioz, D., and Alibart, F.: Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing. Sci. Rep. 6, 39216 (2016).
Type Description Title
WORD
Supplementary materials

Tran et al. supplementary material
Tran et al. supplementary material 1

 Word (486 KB)
486 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed