Skip to main content Accessibility help
×
Home

N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability

  • Subashani Maniam (a1), Kouki Oka (a2) and Hiroyuki Nishide (a2)

Abstract

Pendent-type polymers are attractive materials which allow the flexibility to introduce various redox active moieties that facilitate rapid ion/electron transport and enable charge storage. Here, we demonstrate naphthalene diimide polymers with polynorbornene backbone having N-phenyl, PNAn 5 and N-(4-nitrophenyl), PNNO 6. Small changes in the molecular design have led to a significant difference in bulk material and device properties. PNNO 6 maintained 80% of its capacity at 1C after 10 cycles in a Li-ion coin cell. PNAn 5 displayed exceptionally high charge capacity and rate capability with excellent cyclability, maintaining almost its theoretical capacity at various C-rates throughout 500 cycles.

Copyright

Corresponding author

Address all correspondence to Subashani Maniam, Hiroyuki Nishide at subashani.maniam@monash.edu, nishide@waseda.jp

References

Hide All
1. Schon, T.B., McAllister, B.T., Li, P.-F., and Seferos, D.S.: The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345 (2016).
2. Poizot, P. and Dolhem, F.: Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003 (2011).
3. Liang, Y., Tao, Z., and Chen, J.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742 (2012).
4. Nishide, H. and Oyaizu, K.: Toward flexible batteries. Science 319, 737 (2008).
5. Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M.: From biomass to a renewable Li x C6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348 (2008).
6. Song, Z., Zhan, H., and Zhou, Y.: Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. Engl. 49, 8444 (2010).
7. Sasada, Y., Langford, S.J., Oyaizu, K., and Nishide, H.: Poly(norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Adv. 6, 42911 (2016).
8. Choi, W., Harada, D., Oyaizu, K., and Nishide, H.: Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J. Am. Chem. Soc. 133, 19839 (2011).
9. Kawai, T., Oyaizu, K., and Nishide, H.: High-density and robust charge storage with poly(anthraquinone-substituted norbornene) for organic electrode-active materials in polymer-air secondary batteries. Macromolecules 48, 2429 (2015).
10. Suzuki, T., Sato, T., Zhang, J., Kanao, M., Higuchi, M., and Maki, H.: Electrochemically switchable photoluminescence of an anionic dye in a cationic metallo-supramolecular polymer. J. Mater. Chem. C 4, 1594 (2016).
11. Li, F., Gore, D.N., Wang, S., and Lutkenhaus, J.L.: Unusual internal electron transfer in conjugated radical polymers. Angew. Chem., Int. Ed. 56, 9856 (2017).
12. Morris, M.A., An, H., Lutkenhaus, J.L., and Epps, T.H.: Harnessing the power of plastics: nanostructured polymer systems in lithium-ion batteries. ACS Energy Lett. 2, 1919 (2017).
13. Muench, S., Wild, A., Friebe, C., Haeupler, B., Janoschka, T., and Schubert, U.S.: Polymer-based organic batteries. Chem. Rev. 116, 9438 (2016).
14. Iizuka, Y., Tanaka, M., and Kawakami, H.: Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polym. Int. 62, 703 (2013).
15. Tamura, T. and Kawakami, H.: Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 10, 1324 (2010).
16. Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R., and Marder, S.R.: Rylene and related diimides for organic electronics. Adv. Mater. 23, 268 (2011).
17. Rundel, K., Maniam, S., Deshmukh, K., Gann, E., Prasad, S.K.K., Hodgkiss, J.M., Langford, S.J., and McNeill, C.R.: Naphthalene diimide-based small molecule acceptors for organic solar cells. J. Mater. Chem. A 5, 12266 (2017).
18. Young, N.A., Drew, S.C., Maniam, S., and Langford, S.J.: Systematically studying the effect of fluoride on the properties of cyclophanes bearing naphthalene diimide and dialkoxyaryl groups. Chem. – Asian J. 12, 1668 (2017).
19. Oyaizu, K., Hatemata, A., Choi, W., and Nishide, H.: Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J. Mater. Chem. 20, 5404 (2010).
20. Qin, H., Song, Z.P., Zhan, H., and Zhou, Y.H.: Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367 (2014).
21. Tian, D., Zhang, H.-Z., Zhang, D.-S., Chang, Z., Han, J., Gao, X.-P., and Bu, X.-H.: Li-ion storage and gas adsorption properties of porous polyimides. RSC Adv. 4, 7506 (2014).
22. Ulrich, S., Petitjean, A., and Lehn, J.-M.: Metallo-controlled dynamic molecular tweezers: design, synthesis, and self-assembly by metal-ion coordination. Eur. J. Inorg. Chem. 2010, 1913 (2010).
23. Maniam, S., Sandanayake, S., Izgorodina, E.I., and Langford, S.J.: Unusual products from oxidation of naphthalene diimides. Asian J. Org. Chem. 5, 490 (2016).
24. Bhosale, S.V., Jani, C.H., and Langford, S.J.: Chemistry of naphthalene diimides. Chem. Soc. Rev. 37, 331 (2008).
25. De Blase, C.R., Hernandez-Burgos, K., Rotter, J.M., Fortman, D.J., Abreu, D.d.S., Timm, R.A., Diogenes, I.C.N., Kubota, L.T., Abruna, H.D., and Dichtel, W.R.: Cation-dependent stabilization of electrogenerated naphthalene diimide dianions in porous polymer thin films and their application to electrical energy storage. Angew. Chem., Int. Ed. 54, 13225 (2015).
26. Sano, N., Tomita, W., Hara, S., Min, C.-M., Lee, J.-S., Oyaizu, K., and Nishide, H.: Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device. ACS Appl. Mater. Interfaces 5, 1355 (2013).
27. Cozzi, F. and Siegel, J.S.: Interaction between stacked aryl groups in 1,8-diarylnaphthalenes: dominance of polar/π over charge-transfer effects. Pure Appl. Chem. 67, 683 (1995).
28. Glidewell, C., Low, J.N., Skakle, J.M.S., and Wardell, J.L.: 4-Nitrophenyl phenyl ether: sheets built from C-H⋯O and C-H⋯pi(Arene) hydrogen bonds. Acta Crystallogr. C 61, 185 (2005).
Type Description Title
WORD
Supplementary materials

Maniam et al supplementary material
Maniam et al supplementary material 1

 Word (1.4 MB)
1.4 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed