Skip to main content Accessibility help

Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing

  • D. R. Peng (a1), X. C. Zhong (a1) (a2), J. H. Huang (a3), H. Zhang (a4), Y. L. Huang (a5), X. T. Dong (a1), D. L. Jiao (a1), Z. W. Liu (a1) and R. V. Ramanujan (a2) (a6)...


We report on a novel processing route to prepare La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Cu bulk composites by low-temperature hot pressing. With increasing copper content, the compressive strength of the composites first decrease and then increase owing to the buffering effect of copper, but the magnetocaloric effect reduces to some extent. Copper addition improves the thermal conductivity of the composites, which compensates for the decrease in thermal conductivity due to porosity. A relatively large entropy change of 5.75–7.19 J/(kg K) at 2 T near the Curie temperature (249 K), good thermal conductivity of 7.51–15.55 W/(m·K), and improved compressive strength of 151.1–248.0 MPa make these composites attractive magnetic refrigeration materials.


Corresponding author

Address all correspondence to X. C. Zhong at


Hide All
1.Yuan, Y., Wu, Y., Tong, X., Zhang, H., Wang, H., Liu, X.J., Ma, L., Suo, H.L., and Lu, Z.P.: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).
2.Tegus, O., Brück, E., Buschow, K.H.J., and de Boer, F.R.: Transition-metal-based magnetic refrigerants for room temperature applications. Nature 415, 150 (2002).
3.Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., and Conde, A.: Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 93, 112 (2018).
4.Zhang, H., Liu, J., Zhang, M.X., Shao, Y.Y., Li, Y., and Yan, A.R.: LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing. Scr. Mater. 120, 58 (2016).
5.Fu, S., Long, Y., Sun, Y.Y., and Hu, J.: Microstructural evolution and phase transition dependent on annealing temperature and carbon content for LaFe11.5Si1.5Cx compounds prepared by arc-melting. Intermetallics 39, 79 (2013).
6.Bao, B., Long, Y., Fu, B., Wang, C.L., Ye, R.C., Chang, Y.Q., Zhao, J.L., and Shen, J.: The study on the microstructure and the magnetocaloric effects in LaFe10.8Co0.7Si1.5C0.2 compound at different annealing times. J. Appl. Phys. 107, 09A905 (2010).
7.Shao, Y.Y., Zhang, M.X., Luo, H.B., Yan, A.R., and Liu, J.: Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys. Appl. Phys. Lett. 107, 152403 (2015).
8.Yen, N.H., Thanh, P.T., and Dan, N.H.: Influence of composition on phase formation and magnetocaloric effect of La-Fe-Co-Si alloys prepared by melt-spinning method. J. Electron. Mater. 45, 4288 (2016).
9.Hu, F.X., Gao, J., Qian, X.L., Ilyn, M., Tishin, A.M., Sun, J.R., and Shen, B.G.: Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1−xCox)11.9Si1.1. J. Appl. Phys. 97, 10M303 (2005).
10.Chen, Y.F., Wang, F., Shen, B.G., Hu, F.X., Sun, J.R., Wang, G.J., and Cheng, Z.H.: Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds. J. Phys: Condens. Matter 15, L161 (2003).
11.Zhang, H., Long, Y., Cao, Q., Mudryk, Y., Zou, M., Gschneidner, K.A. Jr., and Pecharsky, V.K.: Microstructure and magnetocaloric effect in cast LaFe11.5Si1.5Bx (x = 0.5, 1.0). J. Magn. Magn. Mater. 322, 1710 (2010).
12.Liu, J., Moore, J.D., Skokov, K.P., Krautz, M., Löwe, K., Barcza, A., Katter, M., and Gutfleisch, O.: Exploring La(Fe,Si)13-based magnetic refrigerants towards application. Scr. Mater. 67, 584 (2012)..
13.Zhang, H., Sun, Y.J., Niu, E., Hu, F.X., Sun, J.R., and Shen, B.G.: Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe,Si)13-based magnetic refrigeration materials. Appl. Phys. Lett. 104, 062407 (2014).
14.Krautz, M., Funk, A., Skokov, K.P., Gottschall, T., Eckert, J., Gutfleisch, O., and Waske, A.: A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous. Scr. Mater. 95, 50 (2015).
15.Dong, X.T., Zhong, X.C., Peng, D.R., Huang, J.H., Zhang, H., Jiao, D.L., Liu, Z.W., and Ramanujan, R.V.: La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/Sn42Bi58 magnetocaloric composites prepared by low temperature hot pressing. J. Alloys Compd. 737, 568 (2018).
16.Skokov, K.P., Yu Karpenkov, D., Kuz'min, M.D., Radulov, I.A., Gottschall, T., Kaeswurm, B., Fries, M., and Gutfleisch, O.: Heat exchangers made of polymer-bonded La(Fe,Si)13. J. Appl. Phys. 115, 17A941 (2014).
17.Xia, W., Huang, J.H., Sun, N.K., Liu, C.L., Ou, Z.Q., and Song, L.: Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8. J. Alloys Compd. 635, 124 (2015).
18.Pulko, B., Tušek, J., Moore, J.D., Weise, B., Skokov, K., Mityashkin, O., Kitanovski, A., Favero, C., Fajfar, P., Gutfleisch, O., Waske, A., and Poredoš, A.: Epoxy-bonded La-Fe-Co-Si magnetocaloric plates. J. Magn. Magn. Mater. 375, 65 (2015).
19.Liu, J., Zhang, M.X., Shao, Y.Y., and Yan, A.R.: LaFe11.6Si1.4/Cu magnetocaloric composites prepared by hot pressing. IEEE Trans. Magn. 51, 2501502 (2015).
20.Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., and Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545 (2009).
21.Martienssen, W. and Warlimont, H.: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg, 2005) p. 45158.
22.Cao, M.S.: Physical Metallurgy Basis (Metallurgical Industry Press, Beijing, China, 1985).
23.Liu, J., Krautz, M., Skokov, K., Woodcock, T.G., and Gutfleisch, O.: Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys. Acta Mater. 59, 3602 (2011).
24.Löwe, K., Liu, J., Skokov, K., Moore, J.D., Sepehri-Amin, H., Hono, K., Katter, M., and Gutfleisch, O.: The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13. Acta Mater. 60, 4268 (2012).
25.Lyubina, J., Schafer, R., Martin, N., Schultz, L., and Gutfleisch, O.: Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735 (2010).
26.Turcaud, J.A., Morrison, K., Berenov, A., Alford, N.M., Sandeman, K.G., and Cohen, L.F.: Microstructural control and tuning of thermal conductivity in La0.67Ca0.33MnO3±δ. Scripta Mater. 68, 510 (2013).
27.Lyubina, J., Hannemann, U., Cohen, L.F., and Ryan, M.P.: Novel La(Fe,Si)13/Cu composites for magnetic cooling. Adv. Energy Mater. 2, 1323 (2012).
28.Banerjee, S.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964).
29.Liu, X.B. and Altounian, Z.: Effect of Co content on magnetic entropy change and structure of La(Fe1−xCox)11.4Si1.6. J. Magn. Magn. Mater. 264, 209 (2003).
30.Radulov, I.A., Skokov, K.P., Karpenkov, D.Y., Gottschall, T., and Gutfleisch, O.: On the preparation of La(Fe,Mn,Si)13Hx polymer-composites with optimized magnetocaloric properties. J. Magn. Magn. Mater. 396, 228 (2015).
31.Hu, F.X., Chen, L., Wang, J., Bao, L.F., Sun, J.R., and Shen, B.G.: Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first-order systems. Appl. Phys. Lett. 100, 072403 (2012).
32.Zeng, Q., Baker, I., McCreary, V., and Yan, Z.C.: Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders. J. Magn. Magn. Mater. 318, 28 (2007).
33.Gschneidner, K.A. Jr., Pecharsky, V.K., and Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005).
34.Niu, X.J., Gschneidner, K.A. Jr., Pecharsky, A.O., and Pecharsky, V.K.: Crystallography, magnetic properties and magnetocaloric effect in Gd4(BixSb1−x)3 alloys. J. Magn. Magn. Mater. 234, 193 (2001).
35.Zhang, Y.Q. and Zhang, Z.D.: Giant magnetoresistance and magnetocaloric effects of the Mn1.82V0.18Sb compound. J. Alloys Compd. 365, 35 (2004).
36.Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., and Zhang, X.X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 78, 3675 (2001).
37.Bingham, N.S., Phan, M.H., Srikanth, H., Torija, M.A., and Leighton, C.: Magnetocaloric effect and refrigerant capacity in charge-ordered manganites. J. Appl. Phys. 106, 023909 (2009).
38.Yu, P., Zhang, N.Z., Cui, Y.T., Wu, Z.M., Wen, L., Zeng, Z.Y., and Xia, L.: Achieving better magneto-caloric effect near room temperature in amorphous Gd50Co50 alloy by minor Zn addition. J. Non-Crystall. Solids 434, 36 (2016).

Related content

Powered by UNSILO

Novel processing of Cu-bonded La-Ce-Fe-Co-Si magnetocaloric composites for magnetic refrigeration by low-temperature hot pressing

  • D. R. Peng (a1), X. C. Zhong (a1) (a2), J. H. Huang (a3), H. Zhang (a4), Y. L. Huang (a5), X. T. Dong (a1), D. L. Jiao (a1), Z. W. Liu (a1) and R. V. Ramanujan (a2) (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.