Skip to main content Accessibility help
×
Home

Non-distorted visible light-absorbing thiol-PEGylated gold-coated superparamagnetic iron oxide nanoparticles–porphyrin conjugates and their inhibitory effects against nosocomial pathogens

  • Bamidele M. Amos-Tautua (a1) (a2), Olayemi J. Fakayode (a1) (a2), Sandy van Vuuren (a3), Sandile P. Songca (a4) and Oluwatobi S. Oluwafemi (a1) (a2)...

Abstract

A low-cost synthesis approach was developed for the fabrication of four symmetric meso-substituted water-soluble thiolated polyethylene glycol gold-coated superparamagnetic iron oxide nanoparticles–porphyrin (p-hydroxyphenyl [THPP], 3,5-dimethoxyphenyl [TdMPP], 3-pyridyl[T-3-PyP], and 1-methylpyridinium-3-yl[T3-Py+P4I]) conjugates to achieve materials with enhanced absorption and therapeutic properties. After evaluation of their antibacterial inhibition characteristics against four nocosomial pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis), THPP and TdMPP conjugates showed some remarkable minimum inhibitory concentration values of 0.104 and 0.625 mg/mL against E. coli and E. faecalis, respectively, making these materials to be alternative agents for the inhibition of these pathogens in the environmental and clinical fields.

Copyright

Corresponding author

Address all correspondence to Oluwatobi S. Oluwafemi at oluwafemi.oluwatobi@gmail.com

References

Hide All
1.Penon, O., Patino, T., Barrios, L., Nogues, C., Amabilino, D.B., Wurst, K., and Perez-Garcia, L.: A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity. ChemistryOpen 4, 127136 (2015).
2.Barona-Castaño, J.C., Carmona-Vargas, C.C., Brocksom, T.J., and De Oliveira, K.T.: Porphyrins as catalysts in scalable organic reactions. Molecules 21, 127 (2016).
3.Allison, R.R. and Moghissi, K.: Photodynamic therapy (PDT): PDT mechanisms. Clin. Endosc. 46, 2429 (2013).
4.La, D.D., Bhosale, S.V., Jones, L.A., and Bhosale, S.V.: Arginine-induced porphyrin-based self-assembled nanostructures for photocatalytic applications under simulated sunlight irradiation. Photochem. Photobiol. Sci. 16, 151154 (2017).
5.Paolesse, R., Nardis, S., Monti, D., Stefanelli, M., and Di Natale, C.: Porphyrinoids for chemical sensor applications. Chem. Rev. 117, 25172583 (2017).
6.Gao, B., Liu, Y., Yin, H., Li, Y., Bai, Q., and Zhang, L.: Water-soluble dendritic polyaspartic porphyrins: potential photosensitizers for photodynamic therapy. New J. Chem. 36, 2831 (2012).
7.Winkler, K., Simon, C., Finke, M., Bleses, K., Birke, M., Szentmáry, N., Hüttenberger, D., Eppig, T., Stachon, T., Langenbucher, A., Foth, H.-J., Herrmann, M., Seitz, B., and Bischoff, M.: Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm). J. Photochem. Photobiol. B Biol. 162, 340347 (2016).
8.Li, Z., Wang, C., Cheng, L., Gong, H., Yin, S., Gong, Q., Li, Y., and Liu, Z.: PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 34, 91609170 (2013).
9.Dou, Q.Q., Teng, C.P., Ye, E., and Loh, X.J.: Effective near-infrared photodynamic therapy assisted by upconversion nanoparticles conjugated with photosensitizers. Int. J. Nanomed. 10, 419432 (2015).
10.Fakayode, O.J., Kruger, C.A., Songca, S.P., Abrahamse, H., and Oluwafemi, O.S.: Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells. Mater. Sci. Eng. C 92, 737744 (2018).
11.Ormond, A.B. and Freeman, H.S.: Dye sensitizers for photodynamic therapy. Materials 6, 817840 (2013).
12.Fakayode, O.J., Tsolekile, N., Songca, S.P., and Oluwafemi, O.S.: Applications of functionalized nanomaterials in photodynamic therapy. Biophys. Rev. 10, 4967 (2018).
13.Zhou, F., Xing, D., Ou, Z., Wu, B., Resasco, D.E., and Chen, W.R.: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14, 17 (2009).
14.Vieira, L., Castilho, M.L., Ferreira, I., Ferreira-Strixino, J., Hewitt, K.C., and Raniero, L.: Synthesis and characterization of gold nanostructured Chorin e6 for Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 18, 611 (2017).
15.Mccarthy, J.R., Bhaumik, J., Merbouh, N., and Weissleder, R.: High-yielding syntheses of hydrophilic conjugatable chlorins and bacteriochlorins. Org. Biomol. Chem. 7, 34303436 (2009).
16.Aravindu, K., Mass, O., Vairaprakash, P., Springer, J.W., Yang, E., Niedzwiedzki, D.M., Kirmaier, C., Bocian, D.F., Holten, D., and Lindsey, J.S.: Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chem. Sci. 4, 34593477 (2013).
17.Muresan, A.Z. and Lindsey, J.S.: Design and synthesis of water-soluble bioconjugatable trans-AB-porphyrins. Tetrahedron 64, 1144011448 (2008).
18.Huan, Y.F., Fei, Q., Shan, H.Y., Wang, B.J., Xu, H., and Feng, G.D.: A novel water-soluble sulfonated porphyrin fluorescence sensor for sensitive assays of H2O2 and glucose. Analyst 140, 16551661 (2015).
19.Fakayode, O.J., Songca, S.P., and Oluwafemi, O.S.: Neutral red separation property of ultrasmall-gluconic acid capped superparamagnetic iron oxide nanoclusters coprecipitated with goethite and hematite. Sep. Purif. Technol. 192, 475482 (2018).
20.Tintoré, M., Mazzini, S., Polito, L., Marelli, M., Latorre, A., Somoza, Á, Aviñó, A., Fàbrega, C., and Eritja, R.: Gold-coated superparamagnetic nanoparticles for single methyl discrimination in DNA aptamers. Int. J. Mol. Sci. 16, 2762527639 (2015).
21.Mohammad, F., Balaji, G., Weber, A., Uppu, R.M., and Kumar, C.S.S.R.: Influence of gold nanoshell on hyperthermia of super paramagnetic iron oxide nanoparticles (SPIONs). J. Phys. Chem. C 114, 1919419201 (2010).
22.Anbarasu, M., Anandan, M., Chinnasamy, E., Gopinath, V., and Balamurugan, K.: Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 536539 (2015).
23.Silva, A.H., Lima, E., Mansilla, M.V., Zysler, R.D., Troiani, H., Pisciotti, M.L.M., Locatelli, C., Benech, J.C., Oddone, N., Zoldan, V.C., Winter, E., Pasa, A.A., and Creczynski-Pasa, T.B.: Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation. Nanomed. Nanotechnol. Biol. Med. 12, 909919 (2016).
24.Murray, P.R., Rosenthal, K.S., and Pfaller, M.A.: Medical Microbiology, 5th ed. (Elsevier, Philadelphia, PA, USA, 2005), pp. 106348.
25.Khan, H.A., Ahmad, A., and Mehboob, R.: Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed. 5, 509514 (2015).
26.Eloff, J.N.: A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 64, 711713 (1998).
27.He, Y.P., Miao, Y.M., Li, C.R., Wang, S.Q., Cao, L., Xie, S.S., Yang, G.Z., Zou, B.S., and Burda, C.: Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 71, 19 (2005).
28.Krishnamurthy, S., Esterle, A., Sharma, N.C., and Sahi, S.V.: Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 9, 19 (2014).
29.Wu, W., He, Q., and Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397415 (2008).
30.Sun, Q., Reddy, B.V., Marquez, M., Jena, P., Gonzalez, C., and Wang, Q.: Theoretical study on gold-coated iron oxide nanostructure: magnetism and bioselectivity for amino acids. J. Phys. Chem. C. 111, 41594163 (2007).
31.Xue, Y., Li, X., Li, H., and Zhang, W.: Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 19 (2014).
32.Honary, S. and Zahir, F.: Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 1). Trop. J. Pharm. Res. 12, 255264 (2013).
33.Hirsch, V., Kinnear, C., Moniatte, M., Rothen-Rutishauser, B., Clift, M.J.D., and Fink, A.: Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale 5, 37233732 (2013).
34.Ahmed, W., Neller, R., and Katouli, M.: Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl. Environ. Microbiol. 71, 44614468 (2005).
35.Byappanahalli, M.N., Nevers, M.B., Korajkic, A., Staley, Z.R., and Harwood, V.J.: Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76, 685706 (2012).
36.Edberg, S.C., Rice, E.W., Karlin, R.J., and Allen, M.J.: Escherichia coli: the best biological drinking water indicator for public health protection. J. Appl. Microbiol. 88, 106116 (2000).

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Amos-Tautua et al. supplementary material
Amos-Tautua et al. supplementary material

 Word (26 KB)
26 KB

Non-distorted visible light-absorbing thiol-PEGylated gold-coated superparamagnetic iron oxide nanoparticles–porphyrin conjugates and their inhibitory effects against nosocomial pathogens

  • Bamidele M. Amos-Tautua (a1) (a2), Olayemi J. Fakayode (a1) (a2), Sandy van Vuuren (a3), Sandile P. Songca (a4) and Oluwatobi S. Oluwafemi (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.