Skip to main content Accessibility help

Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces

  • Alexander J. Boys (a1), Mary Clare McCorry (a2), Scott Rodeo (a3) (a4) (a5) (a6) (a7) (a8), Lawrence J. Bonassar (a2) (a9) and Lara A. Estroff (a1) (a10)...


Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces
      Available formats


Corresponding author

Address all correspondence to Lawrence J. Bonassar at and Lara A. Estroff at


Hide All

Authors contributed equally to the manuscript.



Hide All
1.Abraham, A.C. and Haut Donahue, T.L.: From meniscus to bone: a quantitative evaluation of structure and function of the human meniscal attachments. Acta Biomater. 9, 63226329 (2013).
2.Mente, L. and Lewis, J.L.: Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12, 637647 (1994).
3.Schinagl, R.M., Gurskis, D., Chen, A.C., and Sah, R.L.: Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15, 499506 (1997).
4.Brooks, P.: Inflammation as an important feature of osteoarthritis. Bull. World Health Organ. 81, 689690 (2003).
5.Shelton, W.R. and Dukes, A.D.: Meniscus replacement with bone anchors: a surgical technique. Arthrosc. J. Arthrosc. Relat. Surg. 10, 324327 (1994).
6.Khetia, E.A. and McKeon, B.P.: Meniscal allografts: biomechanics and techniques. Sports Med. Arthrosc. 15, 114120 (2007).
7.Yang, P.J. and Temenoff, J.S.: Engineering orthopedic tissue interfaces. Tissue Eng. B., Rev. 15, 127141 (2009).
8.Lu, H.H. and Thomopoulos, S.: Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15, 201226 (2013).
9.Font Tellado, S., Rosado Balmayor, E., and Van Griensven, M.: Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv. Drug Deliv. Rev. 94, 126140 (2015).
10.Hammoudi, T.M. and Temenoff, J.S.: Biomaterials for regeneration of tendons and ligaments. Biomater. Tissue Eng. Appl. 11, 307341 (2011).
11.Gao, J., Messner, K., Ralphs, J., and Benjamin, M.: An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat. Embryol. (Berl). 19, 399406 (1996).
12.Spalazzi, J.P., Boskey, A.L., Pleshko, N., and Lu, H.H.: Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS ONE. 8, e74349 (2013).
13.Thomopoulos, S., Genin, G.M., and Galatz, L.M.: The development and morphogenesis of the tendon-to-bone insertion. What development can teach us about healing. J. Musculoskelet. Neuronal Interact. 10, 3545 (2010).
14.Messner, K. and Gao, J.: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J. Anat. 193, 161178 (1998).
15.Gao, J.: Immunolocalization of types I, II, and X collagen in the tibial insertion sites of the medial meniscus. Knee Surg. Sports Traumatol. Arthrosc. 8, 6165 (2000).
16.Petersen, W. and Tillmann, B.: Structure and vascularization of the cruciate ligaments of the human knee joint. Anat. Embryol. (Berl). 200, 325334 (1999).
17.Wang, I-N.E., Mitroo, S., Chen, F.H., Lu, H.H., and Doty, S.B.: Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J. Orthop. Res. 24, 17451755 (2006).
18.Benjamin, M. and Ralphs, J.R.: The cell and developmental biology of tendons and ligaments. Int. Rev. Cytol. 196, 85130 (2000).
19.Genin, G.M., Kent, A., Birman, V., Wopenka, B., Pasteris, J.D., Marquez, P.J., and Thomopoulos, S.: Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97, 976985 (2009).
20.Buma, P., Ramrattan, N.N., van Tienen, T.G., and Veth, R.P.: Tissue engineering of the meniscus. Biomaterials 25, 15231532 (2004).
21.Rodrigues, M.T., Reis, R.L., and Gomes, M.E.: Engineering tendon and ligament tissues: present developments towards successful clinical products. J. Tissue Eng. Regen. Med. 7, 673686 (2013).
22.Di Luca, A., Van Blitterswijk, C.A., and Moroni, L.: The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res. C 105, 3452 (2015).
23.Vaquette, C., Fan, W., Xiao, Y., Hamlet, S., Hutmacher, D.W., and Ivanovski, S.: A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 33, 55605573 (2012).
24.Waggett, A.D., Ralphs, J.R., Kwan, A.P.L., Woodnutt, D., and Benjamin, M.: Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 16, 457470 (1998).
25.Fratzl, P. and Weinkamer, R.: Nature's hierarchical materials. Prog. Mater. Sci. 52, 12631334 (2007).
26.Moffat, K.L., Sun, W-H.S., Pena, P.E., Chahine, N.O., Doty, S.B., Ateshian, G.A., Hung, C.T., and Lu, H.H.: Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl. Acad. Sci. U.S.A. 105, 79477952 (2008).
27.Liu, Y.X., Thomopoulos, S., Birman, V., Li, J.S., and Genin, G.M.: Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech. Mater. 44, 8392 (2012).
28.Shen, G.: The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod. Craniofacial Res. 8, 1117 (2005).
29.Hardingham, T.E. and Fosang, A.J.: Proteoglycans: many forms and many function. FASEB J. 6, 861870 (1992).
30.Benjamin, M. and Ralphs, J.R.: Fibrocartilage in tendons and ligaments—an adaptation to compressive load. J. Anat. 193(Pt 4), 481494 (1998).
31.Melrose, J., Smith, S., Cake, M., Read, R., and Whitelock, J.: Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: An ageing study. Histochem. Cell Biol. 124, 225235 (2005).
32.Rossetti, L., Kuntz, L.A., Kunold, E., Schock, J., Grabmayr, H., Sieber, S.A., Burgkart, R., and Bausch, A.R.: The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16, 664670 (2017).
33.Tavakoli Nia, H., Han, L., Soltani Bozchalooi, I., Roughley, P., Youcef-Toumi, K., Grodzinsky, A.J., and Ortiz, C.: Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties. ACS Nano. 9, 26142625 (2015).
34.Garg, A.K., Berg, R.A., Silver, F.H., and Garg, H.G.: Effect of proteoglycans on type I collagen fibre formation. Biomaterials 10, 413419 (1989).
35.Vogel, K.G. and Trotter, J.A.: The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll. Relat. Res. 7, 105114 (1987).
36.Vogel, K.G., Paulsson, M., and Heinegård, D.: Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 223, 587597 (1984).
37.Vanderploeg, E.J., Wilson, C.G., Imler, S.M., Ling, C.H.Y., and Levenston, M.E.: Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus. J. Anat. 221, 174186 (2012).
38.Wopenka, B. and Pasteris, J.D.: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131143 (2005).
39.Nudelman, F., Lausch, A.J., Sommerdijk, N.A., and Sone, E.D.: In vitro models of collagen biomineralization. J. Struct. Biol. 183, 258269 (2013).
40.Weiner, S. and Wagner, H.D.: THE MATERIAL BONE: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271298 (1998).
41.Reznikov, N., Shahar, R., and Weiner, S.: Bone hierarchical structure in three dimensions. Acta Biomater. 10, 38153826 (2014).
42.Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L., and Thomopoulos, S.: Mineral distributions at the developing tendon enthesis. PLoS ONE 7, 111 (2012).
43.Keaveny, T.M., Morgan, E.F., Niebur, G.L., and Yeh, O.C.: Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3, 307333 (2001).
44.Deymier-Black, A.C., Pasteris, J.D., Genin, G.M., and Thomopoulos, S.: Allometry of the tendon enthesis: mechanisms of load transfer between tendon and bone. J. Biomech. Eng. 137, 111005 (2015).
45.Allan, K.S., Pilliar, R.M., Wang, J., Grynpas, M.D., and Kandel, R.A.: Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 13, 167177 (2007).
46.Huang, X., Yang, D., Yan, W., Shi, Z., Feng, J., Gao, Y., Weng, W., and Yan, S.: Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials 28, 30913100 (2007).
47.Liu, W., Lipner, J., Xie, J., Manning, C.N., Thomopoulos, S., and Xia, Y.: Nano fiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl. Mater. Interfaces 6, 28422849 (2014).
48.Kim, B.S., Kim, E.J., Choi, J.S., Jeong, J.H., Jo, C.H., and Cho, Y.W.: Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J. Biomed. Mater. Res. A 102, 40444054 (2014).
49.Nyberg, E., Rindone, A., Dorafshar, A., and Grayson, W.L.: Comparison of 3D-printed poly-ε-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng. A 23, 503514 (2017).
50.Tevlek, A., Hosseinian, P., Ogutcu, C., Turk, M., and Aydin, H.M.: Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. Mater. Sci. Eng. C 72, 316324 (2017).
51.Spalazzi, J.P., Doty, S.B., Moffat, K.L., Levine, W.N., and Lu, H.H.: Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 12, 34973508 (2006).
52.Criscenti, G., Longoni, A., Di Luca, A., De Maria, C., Van Blitterswijk, C.A., Vozzi, G., and Moroni, L.: Triphasic scaffolds for the regeneration of the bone–ligament interface. Biofabrication 8, 15009 (2016).
53.Cooper, J.A., Lu, H.H., Ko, F.K., Freeman, J.W., and Laurencin, C.T.: Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26, 15231532 (2005).
54.Dormer, N.H., Singh, M., Zhao, L., Mohan, N., Berkland, C.J., and Detamore, M.S.: Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J. Biomed. Mater. Res. 100, 162170 (2012).
55.Liu, Y., Thomopoulos, S., Chen, C., Birman, V., Buehler, M.J., and Genin, G.M.: Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. J. R. Soc. Interface 11, 20130835 (2014).
56.Paxton, J.Z., Donnelly, K., Keatch, R.P., and Baar, K.: Engineering the bone–ligament Interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng. A 15, 12011209 (2009).
57.Altman, G.H., Horan, R.L., Lu, H.H., Moreau, J., Martin, I., Richmond, J.C., and Kaplan, D.L.: Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 41314141 (2002).
58.Font Tellado, S., Bonani, W., Rosado Balmayor, E., Föhr, P., Motta, A., Migliaresi, C., and van Griensven, M.: Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng. A 23, 859872 (2017).
59.Park, Y-B., Ha, C-W., Lee, C-H., and Park, Y-G.: Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel: a case report with a 5-year follow-up. BMC Musculoskelet. Disord. 18, 59 (2017).
60.McCorry, M.C., Mansfield, M.M., Sha, X., Coppola, D.J., Lee, J.W., and Bonassar, L.J.: A model system for developing a tissue engineered meniscal enthesis. Acta Biomater. 56, 110117 (2016).
61.Chang, C.H., Lin, F.H., Lin, C.C., Chou, C.H., and Liu, H.C.: Cartilage tissue engineering on the surface of a novel gelatin-calcium- phosphate biphasic scaffold in a double-chamber bioreactor. J. Biomed. Mater. Res.B, Appl. Biomater. 71, 313321 (2004).
62.Wang, I-N.E., Shan, J., Choi, R., Oh, S., Kepler, C.K., Chen, F.H., and Lu, H.H.: Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25, 16091620 (2007).
63.Xu, K., Kuntz, L.A., Foehr, P., Kuempel, K., Wagner, A., Tuebel, J., Deimling, C.V., and Burgkart, R.H.: Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLoS ONE. 12, e0171577 (2017).
64.Sundar, S., Pendegrass, C.J., and Blunn, G.W.: Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J. Biomed. Mater. Res. B, Appl. Biomater. 88, 115122 (2009).
65.Lipner, J., Shen, H., Cavinatto, L., Liu, W., Havlioglu, N., Xia, Y., Galatz, L.M., and Thomopoulos, S.: In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng. A 21, 27662774 (2015).
66.Wegst, U.G., Bai, H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14, 2336 (2014).
67.Ding, X., Zhu, M., Xu, B., Zhang, J., Zhao, Y., Ji, S., Wang, L., Wang, L., Li, X., Kong, D., Ma, X., and Yang, Q.: Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl. Mater. Interfaces 6, 1669616705 (2014).
68.Ma, J., Smietana, M.J., Kostrominova, T.Y., Wojtys, E.M., Larkin, L.M., and Arruda, E.M.: Three-dimensional engineered bone–ligament–bone constructs for anterior cruciate ligament replacement. Tissue Eng. A 18, 103116 (2012).
69.Min, H.K., Oh, S.H., Lee, J.M., Im, G.I., and Lee, J.H.: Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: In vitro evaluation on adipose-derived stem cell differentiation. Acta Biomater. 10, 12721279 (2014).
70.Baker, B.M. and Mauck, R.L.: The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28, 19671977 (2007).
71.Park, J.S., Yang, H.J., Woo, D.G., Yang, H.N., Na, K., and Park, K.H.: Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-B3 complexed with chondroitin sulfate. J. Biomed. Mater. Res. A 92, 806816 (2010).
72.Han, W.M., Heo, S-J., Driscoll, T.P., Delucca, J.F., McLeod, C.M., Smith, L.J., Duncan, R.L., Mauck, R.L., and Elliott, D.M.: Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nat. Mater. 15, 477484 (2016).
73.Spalazzi, J.P., Dagher, E., Doty, S.B., Guo, X.E., Rodeo, S.A., and Lu, H.H.: In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86, 112 (2008).
74.Puetzer, J.L., Koo, E., and Bonassar, L.J.: Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J. Biomech. 48, 14361443 (2015).
75.Lian, J.B. and Stein, G.S.: Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 3, 269305 (1992).
76.Mackie, E.J., Ahmed, Y.A., Tatarczuch, L., Chen, K.S., and Mirams, M.: Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40, 4662 (2008).
77.Sandell, L.J. and Aigner, T.: Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 3, 107113 (2001).
78.Sanchez-Adams, J. and Athanasiou, K.A.: The knee meniscus: a complex tissue of diverse cells. Cell. Mol. Bioeng. 2, 332340 (2009).
79.Spanoudes, K., Gaspar, D., Pandit, A., and Zeugolis, D.I.: The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol. 32, 474482 (2014).
80.Hasegawa, A., Nakahara, H., Kinoshita, M., Asahara, H., Koziol, J., and Lotz, M.K.: Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res. Ther. 15, R29 (2013).
81.Lee, C.H., Rodeo, S.A., Fortier, L.A., Lu, C., Erisken, C., and Mao, J.J.: Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl. Med. 6, 266ra171 (1–11) (2014).
82.Monibi, F.A. and Cook, J.L.: Tissue-derived extracellular matrix bioscaffolds: emerging applications in cartilage and meniscus repair. Tissue Eng. B, Rev. 23, 386398 (2017).
83.Zelzer, E., Blitz, E., Killian, M.L., and Thomopoulos, S.: Tendon-to-bone attachment: from development to maturity. Birth Defects Res. Part C. 102, 101112 (2014).
84.Jiang, J., Nicoll, S.B., and Lu, H.H.: Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem. Biophys. Res. Commun. 338, 762770 (2005).
85.McCorry, M.C., Puetzer, J.L., and Bonassar, L.J.: Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance. Stem Cell Res. Ther. 7, 39 (2016).
86.McCorry, M.C. and Bonassar, L.J.: Fiber development and matrix production in tissue-engineered menisci using bovine mesenchymal stem cells and fibrochondrocytes. Connect. Tissue Res. 58, 329341 (2017).
87.Im, G.: Coculture in musculoskeletal tissue regeneration. Tissue Eng. B, Rev. 20, 545554 (2014).
88.Bian, L., Zhai, D.Y., Mauck, R.L., and Burdick, J.A.: Coculture of human mesenchymal stem cells and enhances functional properties of engineered cartilage reverse primer. Tissue Eng. A 17, 11371145 (2011).
89.Hoben, G.M., Willard, V.P., and Athanasiou, K.A.: Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev. 18, 283292 (2009).
90.Gardner, E. and O'Rahilly, R.: The early development of the knee joint in staged human embryos. J. Anat. 102, 289299 (1968).
91.Gray, D.J. and Gardner, E.: Prenatal development of the human knee and superior tibiofibular joints. Am. J. Anat. 86, 235287 (1950).
92.Mérida-Velasco, J.A., Sánchez-Montesinos, I., Espín-Ferra, J., Rodríguez-Vázquez, J.F., Mérida-Velasco, J.R., and Jiménez-Collado, J.: Development of the human knee joint. Anat. Rec. 248, 269278 (1997).
93.Caplan, A.I. and Dennis, J.E.: Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 10761084 (2006).
94.Mackay, A.M., Beck, S.C., Murphy, J.M., Barry, F.P., Chichester, C.O., and Pittenger, M.F.: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415428 (1998).
95.Im, G.I., Shin, Y.W., and Lee, K.B.: Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13, 845853 (2005).
96.Spalazzi, J.P. and Lu, H.H.: Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng. Med. Biol. Mag. 22, 2734 (2003).
97.Gunja, N.J. and Athanasiou, K.A.: Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res. Ther. 9, 112 (2007).
98.Zeltz, C. and Gullberg, D.: The integrin-collagen connection—a glue for tissue repair? J. Cell Sci. 129, 653664 (2016).
99.Augst, A.D., Kong, H.J., and Mooney, D.J.: Alginate hydrogels as biomaterials. Macromol. Biosci. 6, 623633 (2006).
100.Baker, B.M., Nathan, A.S., Gee, A.O., Mauck, R.L.: The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials 31, 61906200 (2010).
101.Tse, J.R., and Engler, A.J.: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, e15978 (2011).
102.Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677689 (2006).
103.Lee, C.H., Shin, H.J., Cho, I.H., Kang, Y-M., Kim, I.A., Park, K-D., and Shin, J-W.: Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26, 12611270 (2005).
104.Subramony, S.D., Dargis, B.R., Castillo, M., Azeloglu, E.U., Tracey, M.S., Su, A., and Lu, H.H.: The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34, 19421953 (2013).
105.Phillips, J.E., Burns, K.L., Le Doux, J.M., Guldberg, R.E., and García, A.J.: Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. USA 105, 1217012175 (2008).
106.Urist, M., DeLange, R., and Finerman, G.: Bone cell differentiation and growth factors. Science 220, 680686 (1983).
107.Linkhart, T.A., Mohan, S., and Baylink, D.J.: Growth factors for bone growth and repair: IGF, TGF and BMP. Bone 19, 1S12S (1996).
108.Lieberman, J.R., Daluiski, A., and Einhorn, T.A.: The Role of growth factors in the repair of bone. J. Bone oin Surg. 84, 10321044 (2002).
109.Molloy, T., Wang, Y., and Murrell, G.A.C.: The roles of growth factors in tendon and ligament healing. Sport. Med. 33, 381394 (2003).
110.James, R., Kesturu, G., Balian, G., and Chhabra, A.B.: Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J. Hand Surg. Am. 33, 102112 (2008).
111.Van der Kraan, P.M., Buma, P., Van Kuppevelt, T., and Van Den Berg, W.B.: Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthr. Cartil. 10, 631637 (2002).
112.Baylink, D.J., Finkelman, R.D., and Mohan, S.: Growth factors to stimulate bone formation. J. Bone Miner. Res. 8, S565S572 (1993).
113.Li, C., Vepari, C., Jin, H-J., Kim, H.J., and Kaplan, D.L.: Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 31153124 (2006).
114.Kakudo, N., Kusumoto, K., Wang, Y.B., Iguchi, Y., and Ogawa, Y.: Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2. Life Sci. 79, 18471855 (2006).
115.Patel, Z.S., Young, S., Tabata, Y., Jansen, J.A., Wong, M.E.K., and Mikos, A.G.: Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43, 931940 (2008).
116.Parry, J.A., Olthof, M.G.L., Shogren, K.L., Dadsetan, M., Van Wijnen, A., Yaszemski, M., and Kakar, S.: Three-dimension-printed porous poly(propylene fumarate) scaffolds with delayed rhBMP-2 release for anterior cruciate ligament graft fixation. Tissue Eng. A 0, 17 (2017).
117.Indrawattana, N., Chen, G., Tadokoro, M., Shann, L.H., Ohgushi, H., Tateishi, T., Tanaka, J., and Bunyaratvej, A.: Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 320, 914919 (2004).
118.Yilgor, P., Tuzlakoglu, K., Reis, R.L., Hasirci, N., and Hasirci, V.: Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30, 35513559 (2009).
119.Connelly, J.T., Wilson, C.G., and Levenston, M.E.: Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs. Osteoarthr. Cartil. 16, 10921100 (2008).
120.Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M., and Yoo, J.U.: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265272 (1998).
121.Macbarb, R.F., Makris, E.A., Hu, J.C., and Athanasiou, K.A.: A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater. 9, 46264634 (2012)
122.Marini, R.P., Martin, I., Stevens, M.M., Langer, R., and Shastri, V.P.: FGF-2 enhances TGF-B1 induced periosteal chondrogenesis. J. Orthop. Res. 22, 11141119 (2004).
123.Imler, S.M., Doshi, A.N., and Levenston, M.E.: Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthr. Cartil. 12, 736744 (2004).
124.Augst, A., Marolt, D., Freed, L.E., Vepari, C., Meinel, L., Farley, M., Fajardo, R., Patel, N., Gray, M., Kaplan, D.L., and Vunjak-Novakovic, G.: Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J. R. Soc. Interface 5, 929939 (2008).
125.Park, H., Temenoff, J.S., Holland, T.A., Tabata, Y., and Mikos, A.G.: Delivery of TGF-1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 70957103 (2005).
126.Mueller, M.B., Fischer, M., Zellner, J., Berner, A., Dienstknecht, T., Prantl, L., Kujat, R., Nerlich, M., Tuan, R.S., and Angele, P.: Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells Tissues Organs 192, 158166 (2010).
127.Kim, M., Erickson, I.E., Choudhury, M., Pleshko, N., and Mauck, R.L.: Transient exposure to TGF-B3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J. Mech. Behav. Biomed. Mater. 11, 92101 (2012).
128.Farng, E., Bs, A.R.U., Bs, D.B., Bs, S.E., and Mcallister, D.R.: The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin. Orthop. Relat. Res. 466, 19301937 (2008).
129.James, R., Kumbar, S.G., Laurencin, C.T., Balian, G., and Chhabra, A.B.: Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed. Mater. 6, 25011 (2011).
130.Aguilar, N.I., Trippel, S., Shi, S., and Bonassar, L.J.: Customized biomaterials to augment chondrocyte gene therapy. Acta Biomater. 53, 260267 (2017).
131.Puetzer, J.L., Brown, B.N., Ballyns, J.J., and Bonassar, L.J.: The effect of IGF-I on anatomically shaped tissue-engineered menisci. Tissue Eng. A 19, 14431450 (2013).
132.Thomopoulos, S., Harwood, F.L., Silva, M.J., Amiel, D., and Gelberman, R.H.: Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J. Hand Surg. Am. 30, 441447 (2005).
133.Hee, C.K., Dines, J.S., Solchaga, L.A., Shah, V.R., and Hollinger, J.O.: Regenerative tendon and ligament healing: opportunities with recombinant human platelet-derived growth factor BB-homodimer. Tissue Eng. B, Rev. 18, 225234 (2012).
134.Yoon, B.S., Pogue, R., Ovchinnikov, D.A., Yoshii, I., Mishina, Y., Behringer, R.R., and Lyons, K.M.: BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 133, 46674678 (2006).
135.Minina, E., Kreschel, C., Naski, M.C., Ornitz, D.M., and Vortkamp, A.: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439449 (2002).
136.Bessa, P.C., Casal, M., and Reis, R.L.: Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J. Tissue Eng. Regen. Med. 2, 8196 (2008).
137.Wolfman, N.M., Hattersley, G., Cox, K., Celeste, A.J., Nelson, R., Yamaji, N., Dube, J.L., Diblasio-smith, E., Nove, J., Song, J.J., Wozney, J.M., Rosen, V., Wolfman, N.M., Hattersley, G., Cox, K., and Anthony, J.: Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J. Clin. Invest. 100, 321330 (1997).
138.Chen, D., Zhao, M., Mundy, G.R., Chen, D., Zhao, M., Mundy, G.R., and Morphogenetic, B.: Bone morphogenetic proteins. Growth Factors 22, 233241 (2004).
139.Decker, R.S., Um, H-B., Dyment, N.A., Cottingham, N., Usami, Y., Enomoto-Iwamoto, M., Kronenberg, M.S., Maye, P., Rowe, D.W., Koyama, E., and Pacifici, M.: Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 5668 (2017).
140.Heine, U., Munoz, E.F., Flanders, K.C., Ellingsworth, L.R., Lam, H.Y., Thompson, N.L., Roberts, A.B., and Sporn, M.B.: Role of transforming growth factor-beta in the development of the mouse embryo. J. Cell Biol. 105, 28612876 (1987).
141.Leonard, C.M., Fuld, H.M., Frenz, D.A., Downie, S.A., Massague, J., and Newman, S.A.: Role of transforming growth factor-B in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-B and evidence for endogenous TGF-B-like activity. Dev. Biol. 145, 99109 (1991).
142.Kulyk, W.M., Rodgers, B.J., Greer, K., and Kosher, R.A.: Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-B. Dev. Biol. 135, 424430 (1989).
143.Isaksson, O.G.P., Jansson, J-O., and Gause, I.A.M.: Growth hormone stimulates longitudinal bone growth. Science 216, 12371239 (1982).
144.Mohan, S., Nakao, Y., Honda, Y., Landale, E., Leser, U., Dony, C., Lang, K., and Baylink, D.J.: Studies on the mechanisms by which insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) and IGFBP-5 modulate IGF actions in bone cells. J. Biol. Chem. 270, 2042420431 (1995).
145.Hunziker, E.B., Wagner, J., and Zapf, J.: Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J. Clin. Invest. 93, 10781086 (1994).
146.Abrahamsson, S.O.: Similar effects of recombinant human insulin-like growth factor-I and II on cellular activities in flexor tendons of young rabbits: Experimental studies in vitro. J. Orthop. Res. 15, 256262 (1997).
147.Midy, V. and Plouët, J.: Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem. Biophys. Res. Commun. 199, 380386 (1994).
148.Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., and Ferrara, N.: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 13061309 (1989).
149.Keck, P.J., Hauser, S.D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D.T.: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 13091312 (1989).
150.Sundararaj, S.K.C., Cieply, R.D., Gupta, G., Milbrandt, T.A., and Puleo, D.A.: Treatment of growth plate injury using IGF-1 loaded PLGA scaffold. J. Tissue Eng. Regen. Med. 9, E202E209 (2015).
151.Gooch, K.J., Blunk, T., Courter, D.L., Sieminski, A.L., Bursac, P.M., Vunjak-Novakovic, G., and Freed, L.E.: IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Biophys. Res. Commun. 286, 909915 (2001).
152.Murphy, W.L., Peters, M.C., Kohn, D.H., and Mooney, D.J.: Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21, 25212527 (2000).
153.Steinert, A.F., Palmer, G.D., Capito, R., Hofstaetter, J.G., Pilapil, C., Ghivizzani, S.C., Spector, M., and Evans, C.H.: Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng. 13, 22272237 (2007).
154.Almeida, H.V., Liu, Y., Cunniffe, G.M., Mulhall, K.J., Matsiko, A., Buckley, C.T., O'Brien, F.J., and Kelly, D.J.: Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. 10, 44004409 (2014).
155.Hildebrand, A., Romarís, M., Rasmussen, L.M., Heinegård, D., Twardzik, D.R., Border, W.A., and Ruoslahti, E.: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302, 527534 (1994).
156.Qi, W-N. and Scully, S.P.: Extracellular collagen regulates expression of trasforming growth factor-beta1 gene. J. Orthop. Res. 18, 928932 (2000).
157.Mongiat, M., Otto, J., Oldershaw, R., Ferrer, F., Sato, J.D., and Iozzo, R.V.: Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J. Biol. Chem. 276, 1026310271 (2001).
158.Ruppert, R., Hoffmann, E., and Sebald, W.: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem. 237, 295302 (1996).
159.Zhu, Y., Oganesian, A., Keene, D.R., and Sandell, L.J.: Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-B1 and BMP-2. J. Cell Biol. 144, 10691080 (1999).
160.Kawecki, M., Łabuś, W., Klama-Baryla, A., Kitala, D., Kraut, M., Glik, J., Misiuga, M., Nowak, M., Bielecki, T., and Kasperczyk, A.: A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’ scaffolds and their role in regenerative medicine. J. Biomed. Mater. Res. Part B Appl. Biomater. 115 (2017). doi: 10.1002/jbm.b.33865.
161.Farnebo, S., Woon, C.Y., Kim, M., Pham, H., and Chang, J.: Reconstruction of the tendon-bone insertion with decellularized tendon-bone composite grafts: comparison with onventional repair. J. Hand Surg. Am. 39, 6574 (2014).
162.Schwartz, A.G., Lipner, J.H., Pasteris, J.D., Genin, G.M., and Thomopoulos, S.: Muscle loading is necessary for the formation of a functional tendon enthesis. Bone 55, 4451 (2013).
163.Lin, H., Lozito, T.P., Alexander, P.G., Gottardi, R., and Tuan, R.S.: Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1 β. Mol. Pharm. 11, 22032212 (2014).
164.Grayson, W.L., Bhumiratana, S., Grace Chao, P.H., Hung, C.T., and Vunjak-Novakovic, G.: Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr. Cartil. 18, 714723 (2010).
165.Goldman, S.M. and Barabino, G.A.: Spatial Engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells. Biores. Open Access 5.1, 109117 (2016).
166.Jaiswal, N., Haynesworth, S.E., Caplan, A.I., and Bruder, S.P.: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64, 295312 (1997).
167.Grayson, W.L., Fröhlich, M., Yeager, K., Bhumiratana, S., Chan, M.E., Cannizzaro, C., Wan, L.Q., Liu, X.S., Guo, X.E., and Vunjak-Novakovic, G.: Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA 107, 32993304 (2010).
168.Boskey, A.L. and Roy, R.: Cell culture systems for studies of bone and tooth mineralization. Chem. Rev. 108, 47164733 (2008).
169.Hata, R-I. and Senoo, H.: L-Ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissue like substance by skin fibroblasts. J. Cell. Physiol. 138, 816 (1989).
170.Schwarz, R.I., Kleinman, P., and Owens, N.: Ascorbate can act as an inducer of the collagen pathway because most steps are tightly coupled. Ann. New York Acad. Sci. 498, 172185 (1987).
171.Li, Q., Qu, F., Han, B., Mauck, R., Han, L., and Ph, D.: Micromechanical heterogeneity and anisotropy of the meniscus extracellular matrix. Acta Biomater. 54, 356366 (2017).
172.Goldman, S.M. and Barabino, G.A.: Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs. J. Tissue Eng. Regen. Med. 11, 572581 (2014).
173.Thomopoulos, S., Marquez, J.P., Weinberger, B., Birman, V., and Genin, G.M.: Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39, 18421851 (2006).
174.Villegas, D.F., Hansen, T.A., Liu, D.F., and Haut Donahue, T.L.: A quantitative study of the microstructure and biochemistry of the medial meniscal horn attachments. Ann. Biomed. Eng. 36, 123131 (2008).
175.Villegas, D.F., and Haut Donahue, T.L.: Collagen morphology in human meniscal attachments: a SEM study. Connect. Tissue Res. 51, 327336 (2010).
176.Villegas, D.F., Maes, J.A., Magee, S.D., and Haut Donahue, T.L.: Failure properties and strain distribution analysis of meniscal attachments. J. Biomech. 40, 26552662 (2007).
177.Hu, Y., Birman, V., Demyier-Black, A., Schwartz, A.G., Thomopoulos, S., and Genin, G.M.: Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone. Biophys. J. 108, 431437 (2015).
178.Kim, H.M., Galatz, L.M., Patel, N., Das, R., and Thomopoulos, S.: Recovery potential after postnatal shoulder paralysis. J. Bone Jt. Surg. 91, 879891 (2009).
179.Thomopoulos, S., Williams, G.R., and Soslowsky, L.J.: Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J. Biomech. Eng. 125, 106 (2003).
180.Clark, C.R. and Ogden, J.A.: Prenatal and postnatal development of human knee joint mensci. Iowa Orthop. J. 1, 2027 (1981).
181.Huang, D., Chang, T.R., Aggarwal, A., Lee, R.C., Ehrlich, H.P.: Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21, 289305 (1993).
182.Thomopoulos, S., Fomovsky, G.M., and Holmes, J.W.: The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 127, 742750 (2005).
183.Grinnell, F.: Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10, 362365 (2000).
184.Costa, K.D., Lee, E.J., and Holmes, J.W.: Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9, 567577 (2003).
185.Nirmalanandhan, V.S., Levy, M.S., Huth, A.J., and Butler, D.L.: Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng. 12, 18651872 (2006).
186.Young, R.G., Butler, D.L., Weber, W., Caplan, A.I., Gordon, S.L., and Fink, D.J.: Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J. Orthop. Res. 16, 406413 (1998).
187.Awad, H.A., Butler, D.L., Harris, M.T., Ibrahim, R.E., Wu, Y., Young, R.G., Kadiyala, S., Boivin, G.P.: In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51, 233240 (2000).
188.Bowles, R.D., Williams, R.M., Zipfel, W.R., and Bonassar, L.J.: Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction. Tissue Eng. Part A 16, 13391348 (2010).
189.Puetzer, J.L., Sallent, I., Gelmi, A., and Stevens, M.M.: Investigating collagen fiber formation for functional musculoskeletal engineering: going beyond the fibril. ORS 2017 Annual Meeting, San Diego, CA, Session No. 50, Vol. 42, Paper No. 348, 2017.
190.Huey, D.J. and Athanasiou, K.A.: Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS ONE 6, e27857 (2011).
191.Puetzer, J.L. and Bonassar, L.J.: Physiologically distributed loading patterns drive the formation of zonally organized collagen structures in tissue engineered meniscus. Tissue Eng. A 22, 907916 (2016).
192.Hendley, C.T., Tao, J., Kunitake, J.A., De Yoreo, J.J., and Estroff, L.A.: Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull. 40, 480489 (2015).
193.Wang, H., Gee, A.O., Hutchinson, I.D., Stoner, K., Warren, R.F., Chen, T.O. and Maher, S.A.: Bone plug versus suture-only fixation of meniscal grafts: effect on joint contact mechanics during simulated gait. Am. J. Sports Med. 42, 16821689 (2014).
194.Ross, K.A., Williams, R.M., Schnabel, L.V., Mohammed, H.O., Potter, H.G., Bradica, G., Castiglione, E., Pownder, S.L., Satchell, P.W., Saska, R.A., and Fortier, L.A.: Comparison of three methods to quantify repair cartilage collagen orientation. Cartilage 4, 111120 (2013).
195.Khanarian, N.T., Boushell, M.K., Spalazzi, J.P., Pleshko, N., Boskey, A.L., and Lu, H.H.: FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age. J. Bone Miner. Res. 29, 126 (2014).
196.Mansfield, J.C., Moger, J., Green, E., Moger, C., and Winlove, C.P.: Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering. J. Biophotonics 6, 803814 (2013).
197.Yamanaka, S.: A fresh look at iPS cells. Cell 137, 1317 (2009).
198.Lander, E.S.: The heroes of CRISPR. Cell 164, 1828 (2016).
199.Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J., and Stroock, A.D.: Microfluidic scaffolds for tissue engineering. Nat. Mater. 6, 908915 (2007).
200.Jose, R.R., Rodriguez, M.J., Dixon, T.A., Omenetto, F., and Kaplan, D.L.: Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater. Sci. Eng. 2, 16621678 (2016).

Related content

Powered by UNSILO

Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces

  • Alexander J. Boys (a1), Mary Clare McCorry (a2), Scott Rodeo (a3) (a4) (a5) (a6) (a7) (a8), Lawrence J. Bonassar (a2) (a9) and Lara A. Estroff (a1) (a10)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.