Skip to main content Accessibility help
×
Home

Natural eggshell membranes exhibiting programmable shape recovery characteristics

  • Chang Liu (a1) (a2), Chen Liu (a1), Qian Li (a2), Miao Song (a3), Dun Niu (a2), Mingming Ma (a4) and Xing Zhang (a1) (a5)...

Abstract

In this study, a novel shape memory polymer (SMP), eggshell membrane (ESM), with macroscopic mesh structures and microscopic crosslinked protein fibers, has shown water-stimulated shape recovery characteristics. Our results show that the collagen triple-helical molecular chains and disulfide-rich motifs in the ESM function as net-points retaining essential structures during deformation, while hydrogen bonds play a key role as switch units for shape recovery through water stimulation. We also demonstrate that programmable shape recovery characteristics of ESM can be obtained by modulating the number of net-points. This study may inspire the design of new programmable SMPs.

Copyright

Corresponding author

Address all correspondence to Xing Zhang, Dun Niu, Mingming Ma at xingzhang@imr.ac.cn, niudun666@hotmail.com, mma@ustc.edu.cn

References

Hide All
1.Leng, J., Lan, X., Liu, Y., and Du, S.: Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56, 10771135 (2011).
2.Xie, T.: Tunable polymer multi-shape memory effect. Nature 464, 267270 (2010).
3.Zhao, D., van Leeuwen, T., Cheng, J., and Feringa, B.L.: Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat. Chem. 9, 250256 (2017).
4.Gelebart, A.H., Mulder, D.J., Vantomme, G., Schenning, A.P.H.J., and Broer, D.J.: A rewritable, reprogrammable, dual light-responsive polymer actuator. Angew. Chem. Int. Ed. 56, 1343613439 (2017).
5.Razzaq, M.Y., Behl, M., Kratz, K., and Lendlein, A.: Multifunctional hybrid nanocomposites with magnetically controlled reversible shape-memory effect. Adv. Mater. 25, 57305733 (2013).
6.Wang, J., Sun, L., Zou, M., Gao, W., Liu, C., Shang, L., Gu, Z., and Zhao, Y.: Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3, e1700004 (2017).
7.Xiao, Y., Zhou, S., Wang, L., and Gong, T.: Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Inter. 2, 35063514 (2010).
8.Deng, H., Dong, Y., Su, J.W., Zhang, C., Xie, Y., Zhang, C., Maschmann, M.R., Lin, Y., and Lin, J.: Bioinspired programmable polymer gel controlled by swellable guest medium. ACS. Appl. Mater. Inter. 9, 3090030908 (2017).
9.Salvekar, A.V., Huang, W., Xiao, R., Wong, Y.S., Venkatraman, S.S., Tay, K.H., and Shen, Z.: Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly(ethylene glycol) (PEG) hydrogel. Acc. Chem. Res. 50, 141150 (2017).
10.Ma, M., Guo, L., Anderson, D.G., and Langer, R.: Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186189 (2013).
11.Fang, Z., Kuang, Y., Zhou, P., Ming, S., Zhu, P., Liu, Y., Ning, H., and Chen, G.: Programmable shape recovery process of water-responsive shape-memory poly(vinyl alcohol) by wettability contrast strategy. ACS. Appl. Mater. Inter. 9, 54955502 (2017).
12.Xiao, X. and Hu, J.: Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci. Rep. 6, 26393 (2016).
13.Liu, Z., Jiao, D., and Zhang, Z.: Remarkable shape memory effect of a natural biopolymer in aqueous environment. Biomaterials 65, 1321 (2015).
14.Ashton, N.N. and Stewart, R.J.: Self-recovering caddisfly silk: energy dissipating, Ca2+-dependent, double dynamic network fibers. Soft Matter 11, 16671676 (2015).
15.Emile, O., Floch, A.L., and Vollrath, F.: Shape memory in spider draglines. Nature 440, 621621 (2006).
16.Baláž, M.: Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 10, 38273843 (2014).
17.Li, Q., Bai, Y., Jin, T., Wang, S., Cui, W., Stanciulescu, I., Yang, R., Nie, H., Wang, L., and Zhang, X.: Bioinspired engineering of poly(ethylene glycol) hydrogels and natural protein fibers for layered heart valve constructs. ACS Appl. Mater. Inter. 9, 1652416535 (2017).
18.Wang, X., Li, Q., Yuan, Y., Mei, B., Huang, R., Tian, Y., Sun, J., Cao, C., Lu, G., and Liang, G.: New method for effectively and quantitatively labeling cysteine residues on chicken eggshell membrane. Org. Biomol. Chem. 10, 80828086 (2012).
19.Nakano, T., Ikawa, N., and Ozimek, L.: Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 82, 510514 (2003).
20.Simkiss, K. and Tyler, C.: A histochemical study of the organic matrix of hen egg-shells. Q. J. Microsc. Sci. 98, 1928 (1957).
21.Li, N., Niu, L., Qi, Y., Yiu, C.K.Y., Ryou, H., Arola, D.D., Chen, J., Pashley, D.H., and Tay, F.R.: Subtleties of biomineralisation revealed by manipulation of the eggshell membrane. Biomaterials 32, 87438752 (2011).
22.Kodali, V.K., Gannon, S.A., Paramasivam, S., Raje, S., Polenova, T., and Thorpe, C.: A novel disulfide-rich protein motif from avian eggshell membranes. PLoS ONE 6, e18187 (2011).
23.Su, H., Han, J., Wang, N., Dong, Q., Zhang, D., and Zhang, C.: In situ synthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique. Smart Mater. Struct. 17, 015045 (2008).
24.Li, C., Liao, H., Zhang, X., Yu, X., and Tong, M.: Preparation of cationic modified collagen extracted from leather wastes and their application in dye flocculation. J. Appl. Polym. Sci. 134, 45363 (2017).
25.Du, H. and Zhang, J.: Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6, 33703376 (2010).
26.Yang, T., Chen, M., Hu, X., Wang, Z., Wang, J., and Dasgupta, P.K.: Thiolated eggshell membranes sorb and speciate inorganic selenium. Analyst 136, 8389 (2011).
27.Chen, P.Y., Mckittrick, J., and Meyers, M.A.: Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 57, 14921704 (2012).
28.Carrino, D.A., Dennis, J.E., Wu, T.M., Arias, J.L., Fernandez, M.S., Rodriguez, J.P., Fink, D.J., Heuer, A.H., and Caplan, A.L.: The avian eggshell extracellular matrix as a model for biomineralization. Connect. Tissue Res. 35, 325329 (1996).
29.Torres, F.G., Troncoso, O.P., Piaggio, F., and Hijar, A.: Structure–property relationships of a biopolymer network: the eggshell membrane. Acta Biomater. 6, 36873693 (2010).
30.Miles, C.A. and Bailey, A.J.: Thermally labile domains in the collagen molecule. Micron 32, 325332 (2001).
Type Description Title
WORD
Supplementary materials

Liu et al. supplementary material
Figures S1-S8

 Word (3.0 MB)
3.0 MB

Natural eggshell membranes exhibiting programmable shape recovery characteristics

  • Chang Liu (a1) (a2), Chen Liu (a1), Qian Li (a2), Miao Song (a3), Dun Niu (a2), Mingming Ma (a4) and Xing Zhang (a1) (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed