Skip to main content Accessibility help
×
Home

Nanostructured substrates for multi-cue investigations of single cells

  • Joseph A. Christodoulides (a1), Marc Christophersen (a1), Jinny L. Liu (a1), James B. Delehanty (a1), Deepa Raghu (a1) (a2), Michael Robitaille (a1), Jeff M. Byers (a1) and Marc P. Raphael (a1)...

Abstract

Cellular adhesion depends on the integration of numerous signaling inputs generated by the chemical and physical properties of the substrate. The complex coupling among inputs makes it challenging experimentally to deconvolve their individual contributions to the adhesion process. To address this roadblock, we have employed a combination of electron beam and optical lithographic techniques to fabricate substrates with independently tunable topographical and chemical signaling cues. Arrays of gold nanostructures were patterned atop quartz substrates, half of which were etched into gold-capped nanopillars. Individual A549 cells exposed simultaneously to Arg-Gly-Asp-functionalized etched and non-etched arrays exhibited strongly preferential adherence to the nanopillars.

Copyright

Corresponding author

Address all correspondence to Marc P. Raphael at marc.raphael@nrl.navy.mil

References

Hide All
1. Knapp, D.M., Tower, T.T., Tranquillo, R.T., and Barocas, V.H.: Estimation of cell traction and migration in an isometric cell traction assay. AlChE J. 45, 2628 (1999).
2. Stevens, M.M. and George, J.H.: Exploring and engineering the cell surface interface. Science 310, 1135 (2005).
3. Johnson, B.N., Lancaster, K.Z., Zhen, G.H., He, J.Y., Gupta, M.K., Kong, Y.L., Engel, E.A., Krick, K.D., Ju, A., Meng, F.B., Enquist, L.W., Jia, X.F., and McAlpine, M.C.: 3D Printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205 (2015).
4. Melchiorri, A.J., Hibino, N., Best, C.A., Yi, T., Lee, Y.U., Kraynak, C.A., Kimerer, L.K., Krieger, A., Kim, P., Breuer, C.K., and Fisher, J.P.: 3D-Printed biodegradable polymeric vascular grafts. Adv. Healthcare Mater. 5, 319 (2016).
5. Griffin, D.R., Weaver, W.M., Scumpia, P.O., Di Carlo, D., and Segura, T.: Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737 (2015).
6. Riahi, R., Yang, Y.L., Zhang, D.D., and Wong, P.K.: Advances in wound-healing assays for probing collective cell migration. JALA 17, 59 (2012).
7. Samavedi, S., Whittington, A.R., and Goldstein, A.S.: Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater.. 9, 8037 (2013).
8. Ren, X.Y., Tu, V., Bischoff, D., Weisgerber, D.W., Lewis, M.S., Yamaguchi, D.T., Miller, T.A., Harley, B.A.C., and Lee, J.C.: Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation. Biomaterials 89, 67 (2016).
9. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E.: Geometric control of cell life and death. Science 276, 1425 (1997).
10. Jahed, Z., Zareian, R., Chau, Y.Y., Seo, B.B., West, M., Tsui, T.Y., Wen, W.J., and Mofrad, M.R.K.: Differential collective- and single-cell behaviors on silicon micropillar arrays. ACS Appl. Mater. Interfaces 8, 23604 (2016).
11. Park, J., Kim, D.H., Kim, H.N., Wang, C.J., Kwak, M.K., Hur, E., Suh, K.Y., An, S.S., and Levchenko, A.: Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat. Mater. 15, 792 (2016).
12. Tzvetkova-Chevolleau, T., Stephanou, A., Fuard, D., Ohayon, J., Schiavone, P., and Tracqui, P.: The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29, 1541 (2008).
13. Wirtz, D., Konstantopoulos, K., and Searson, P.C.: The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512 (2011).
14. Jiang, X.Y., Bruzewicz, D.A., Wong, A.P., Piel, M., and Whitesides, G.M.: Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. U.S.A. 102, 975 (2005).
15. Gupton, S.L. and Waterman-Storer, C.M.: Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361 (2006).
16. Muinonen-Martin, A.J., Susanto, O., Zhang, Q.F., Smethurst, E., Faller, W.J., Veltman, D.M., Kalna, G., Lindsay, C., Bennett, D.C., Sansom, O.J., Herd, R., Jones, R., Machesky, L.M., Wakelam, M.J.O., Knecht, D.A., and Insall, R.H.: Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol.. 12, 1 (2014).
17. Lo, C.M., Wang, H.B., Dembo, M., and Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144 (2000).
18. Hadjipanayi, E., Mudera, V., and Brown, R.A.: Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil. Cytoskeleton 66, 121 (2009).
19. Isenberg, B.C., DiMilla, P.A., Walker, M., Kim, S., and Wong, J.Y.: Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97, 1313 (2009).
20. Xue, C.Y., Wong, D.Y., and Kasko, A.M.: Complex dynamic substrate control: dual-tone hydrogel photoresists allow double-dissociation of topography and modulus. Adv. Mater. 26, 1577 (2014).
21. Jiang, B., Suen, R., Wang, J.J., Zhang, Z.J., Wertheim, J.A., and Ameer, G.A.: Mechanocompatible polymer-extracellular-matrix composites for vascular tissue engineering. Adv. Healthcare Mater. 5, 1594 (2016).
22. Ricoult, S.G., Thompson-Steckel, G., Correia, J.P., Kennedy, T.E., and Juncker, D.: Tuning cell-surface affinity to direct cell specific responses to patterned proteins. Biomaterials 35, 727 (2014).
23. Smith, J.T., Elkin, J.T., and Reichert, W.M.: Directed cell migration on fibronectin gradients: Effect of gradient slope. Exp. Cell Res. 312, 2424 (2006).
24. Humphries, J.D., Byron, A., and Humphries, M.J.: Integrin ligands at a glance. J. Cell Sci. 119, 3901 (2006).
25. DeLong, S.A., Gobin, A.S., and West, J.L.: Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J. Controlled Release 109, 139 (2005).
26. Huang, J.H., Grater, S.V., Corbellinl, F., Rinck, S., Bock, E., Kemkemer, R., Kessler, H., Ding, J.D., and Spatz, J.P.: Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett.. 9, 1111 (2009).
27. Cavalcanti-Adam, E.A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B., and Spatz, J.P.: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964 (2007).
28. Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., and Horwitz, A.F.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537 (1997).
29. Nikkhah, M., Edalat, F., Manoucheri, S., and Khademhosseini, A.: Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33, 5230 (2012).
30. Anselme, K. and Bigerelle, M.: Role of materials surface topography on mammalian cell response. Int. Mater. Rev. 56, 243 (2011).
31. Giljean, S., Najjar, D., Bigerelle, B.M., and Iost, A.: Multiscale analysis of abrasion damage on stainless steel. Surf. Eng. 24, 8 (2008).
32. Galli, C., Coen, M.C., Hauert, R., Katanaev, V.L., Groning, P., and Schlapbach, L.: Creation of nanostructures to study the topographical dependency of protein adsorption. Colloids Surf.,B 26, 255 (2002).
33. Lord, M.S., Foss, M., and Besenbacher, F.: Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5, 66 (2010).
34. Charras, G. and Sahai, E.: Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813 (2014).
35. Kim, D.H., Han, K., Gupta, K., Kwon, K.W., Suh, K.Y., and Levchenko, A.: Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30, 5433 (2009).
36. Fraser, S.A., Ting, Y.H., Mallon, K.S., Wendt, A.E., Murphy, C.J., and Nealey, P.F.: Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media. J. Biomed. Mat. Res., Part A 86A, 725 (2008).
37. Mahmud, G., Campbell, C.J., Bishop, K.J.M., Komarova, Y.A., Chaga, O., Soh, S., Huda, S., Kandere-Grzybowska, K., and Grzybowski, B.A.: Directing cell motions on micropatterned ratchets. Nat. Phys. 5, 606 (2009).
38. Teixeira, A.I., Abrams, G.A., Bertics, P.J., Murphy, C.J., and Nealey, P.F.: Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881 (2003).
39. Teixeira, A.I., McKie, G.A., Foley, J.D., Berticsc, P.J., Nealey, P.F., and Murphy, C.J.: The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27, 3945 (2006).
40. Gentile, F., Tirinato, L., Battista, E., Causa, F., Liberale, C., di Fabrizio, E.M., and Decuzzi, P.: Cells preferentially grow on rough substrates. Biomaterials 31, 7205 (2010).
41. Raghu, D., Christodoulides, J.A., Delehanty, J.B., Byers, J.M., and Raphael, M.P.: A label-free technique for the spatio-temporal imaging of single cell secretions. J. Visualized Exp. 105, 1 (2015).
42. Raphael, M.P., Christodoulides, J.A., Delehanty, J.B., Long, J.P., and Byers, J.M.: Quantitative imaging of protein secretions from single cells in real time. Biophys. J. 105, 602 (2013).
Type Description Title
UNKNOWN
Supplementary materials

Christodoulides et al. supplementary material
Christodoulides et al. supplementary material 1

 Unknown (18.4 MB)
18.4 MB

Nanostructured substrates for multi-cue investigations of single cells

  • Joseph A. Christodoulides (a1), Marc Christophersen (a1), Jinny L. Liu (a1), James B. Delehanty (a1), Deepa Raghu (a1) (a2), Michael Robitaille (a1), Jeff M. Byers (a1) and Marc P. Raphael (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed