Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T03:58:17.669Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of montmorillonite reinforcing amylose plasticized by Brazilian Cerrado oils: polymer–clay nanocomposite

Published online by Cambridge University Press:  19 March 2018

Felipe Azevedo Rios Silva*
Affiliation:
Laboratório de Estudos Estruturais Moleculares, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900 Brasília—DF, Brazil
Maria José Araújo Sales
Affiliation:
Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900 Brasília—DF, Brazil
Mohamed Ghoul
Affiliation:
Laboratoire Réactions et Génie des Procédés, Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires, Institut National Polytechnique de Lorraine, Université de Lorraine, 54501, Vandœuvre-lès-Nancy, France
Latifa Chebil
Affiliation:
Laboratoire Réactions et Génie des Procédés, Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires, Institut National Polytechnique de Lorraine, Université de Lorraine, 54501, Vandœuvre-lès-Nancy, France
Guilherme Duarte Ramos Matos
Affiliation:
Department of Chemistry, University of California, Irvine, California 92697, USA
Elaine Rose Maia
Affiliation:
Laboratório de Estudos Estruturais Moleculares, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900 Brasília—DF, Brazil
*
Address all correspondence to Felipe Azevedo Rios Silva at felipearsilva@gmail.com
Get access

Abstract

In this study, we performed computational simulations to extend the behavior knowledge over molecular systems composed by amylose oligomers, three fatty acids often found in Brazilian vegetable oils, water solvent, and montmorillonite. The focus is directed to the molecular movement and to intra and intermolecular interactions, each simulation step being compared with the literature's experimental profile. The calculations were mostly performed by Molecular Mechanics and Dynamics methods. The excellent agreement and complementarities with the literature results indicate, once again, the important contribution offered by the computational simulations to the design of new polymer–clay nanocomposites with biopolymers.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schlemmer, D. and Sales, M.J.A.: Thermoplastic starch films with vegetable oils of Brazilian Cerrado. J. Therm. Anal. Calorim. 99, 675 (2010).Google Scholar
2.Yu, L., Dean, K., and Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576 (2006).Google Scholar
3.Schlemmer, D., Angélica, R.S., and Sales, M.J.A.: Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos. Struct. 92, 2066 (2010).Google Scholar
4.Ray, S.S.: Recent trends and future outlooks in the field of clay-containing polymer nanocomposites. Macromol. Chem. Phys. 215, 1162 (2014).Google Scholar
5.Posocco, P., Pricl, S., and Fermeglia, M.: Multiscale modeling approach for polymeric nanocomposites. In Model. Predict. Polym. Nanocomposite Prop., edited by Mittal, V. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013), pp. 95128.Google Scholar
6.Scocchi, G., Posocco, P., Danani, A., Pricl, S., and Fermeglia, M.: To the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocomposites. Fluid Phase Equilib. 261, 366 (2007).Google Scholar
7.Lin, J.-C.: Investigation of impact behavior of various silica-reinforced polymeric matrix nanocomposites. Compos. Struct. 84, 125 (2008).Google Scholar
8.Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., and Srikulkit, K.: Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 67, 155 (2007).Google Scholar
9.Gournis, D., Lappas, A., Karakassides, M.A., Többens, D., and Moukarika, A.: A neutron diffraction study of alkali cation migration in montmorillonites. Phys. Chem. Miner. 35, 49 (2008).Google Scholar
10.Downs, R.T. and Hall-Wallace, M.: The American Mineralogist crystal structure database. Am. Mineral. 88, 247 (2003).Google Scholar
11.Ghavami, M., Zhao, Q., Javadi, S., Jangam, J.S.D., Jasinski, J.B., and Saraei, N.: Change of organobentonite interlayer microstructure induced by sorption of aromatic and petroleum hydrocarbons—a combined study of laboratory characterization and molecular dynamics simulations. Colloids Surf. A Physicochem. Eng. Asp. 520, 324 (2017).Google Scholar
12.Wang, Y., Wohlert, J., Berglund, L.A., Tu, Y., and Ågren, H.: Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay–polysaccharide nanocomposites. J. Mater. Chem. A 2, 9541 (2014).Google Scholar
13.Strašák, T., Malý, M., Müllerová, M., Čermák, J., Kormunda, M., Čapková, P., Matoušek, J., Červenková Šťastná, L., Rejnek, J., Holubová, J., Jandová, V., and Čépe, K.: Synthesis and characterization of carbosilane dendrimer–sodium montmorillonite clay nanocomposites. Experimental and theoretical studies. RSC Adv. 6, 43356 (2016).CrossRefGoogle Scholar
14.Schlemmer, D.: Estudo de Nanocompósitos de Amido Termoplástico E Montmorilonita, Utilizando Óleos Vegetais Como Plastificante (Universidade de Brasília, Brasília, Brazil, 2011).Google Scholar
15.Heinz, H., Lin, T.J., Kishore Mishra, R., and Emami, F.S.: Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29, 1754 (2013).Google Scholar
16.Cygan, R.T., Liang, J.-J., and Kalinichev, A.G.: Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 108, 1255 (2004).Google Scholar
17.Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., and Hagler, A.T.: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct. Funct. Genet. 4, 31 (1988).Google Scholar
18.Sun, H., Mumby, S.J., Maple, J.R., and Hagler, A.T.: An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978 (1994).Google Scholar
19.Hill, J.R. and Sauer, J.: Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica. J. Phys. Chem. 98, 1238 (1994).Google Scholar
20.Sun, H.: Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28, 701 (1995).Google Scholar
21.Biovia, D.S. (2012) Dassault Systèmes BIOVIA. Materials Studio, Release 6.0 (Dassault Systèmes BIOVIA, San Diego).Google Scholar
22.Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).Google Scholar
23.Scocchi, G., Posocco, P., Fermeglia, M., and Pricl, S.: Polymer–clay nanocomposites: a multiscale molecular modeling approach. J. Phys. Chem. B 111, 2143 (2007).CrossRefGoogle ScholarPubMed
24.Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).Google Scholar
25.Zhou, Q., Lu, X., Liu, X., Zhang, L., He, H., Zhu, J., and Yuan, P.: Hydration of methane intercalated in Na-smectites with distinct layer charge: insights from molecular simulations. J. Colloid Interface Sci. 355, 237 (2011).Google Scholar
26.Wungu, T.D.K., Agusta, M.K., Saputro, A.G., Dipojono, H.K., and Kasai, H.: First principles calculation on the adsorption of water on lithium–montmorillonite (Li–MMT). J. Phys. Condens. Matter 24, 475506 (2012).Google Scholar
27.Ruiz-Hitzky, E., Aranda, P., and Darder, M.: Hybrid and biohybrid materials based on layered clays. In Tailored Org. Mater., edited by Brunet, E., Colón, J.L., and Clearfield, A. (John Wiley & Sons, Inc, Hoboken, NJ, 2015), pp. 245297.Google Scholar
28.Toth, R., Voorn, D.-J., Handgraaf, J.-W., Fraaije, J.G.E.M., Fermeglia, M., Pricl, S., and Posocco, P.: Multiscale computer simulation studies of water-based montmorillonite/poly(ethylene oxide) nanocomposites. Macromolecules 42, 8260 (2009).Google Scholar
29.Kapral, R.: Multiparticle collision dynamics: simulation of complex systems on mesoscales. Adv. Chem. Phys. 140, 89 (2008).Google Scholar
30.Smiatek, J. and Schmid, F.: Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro-and Nanochannels (InTech, Rijeka, Croatia, Adv. Microfluid, No. May 2014, 2012).Google Scholar
31.Toth, R., Coslanich, A., Ferrone, M., Fermeglia, M., Pricl, S., Miertus, S., and Chiellini, E.: Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy. Polymer (Guildf) 45, 8075 (2004).Google Scholar
Supplementary material: File

Azevedo Rios Silva et al. supplementary material

Azevedo Rios Silva et al. supplementary material 1

Download Azevedo Rios Silva et al. supplementary material(File)
File 2.7 MB