Skip to main content Accessibility help
×
Home

A model revealing grain boundary arrangement-dominated fatigue cracking behavior in nanoscale metallic multilayers

  • Fei Liang (a1) (a2), Dong Wang (a3), Xi Li (a1), Xue-Mei Luo (a1), Peter Schaaf (a3) and Guang-Ping Zhang (a1)...

Abstract

In order to reveal the quantitative relationship between fatigue crack deflection path and cross-sectional grain boundary (GB) arrangement of metallic nanolayered composites (NLCs), a stochastic model was established based on the interface-dominant fatigue damage for the ultrafine-scale NLCs. The model indicates that the crack deflection length decreases with decreasing GB arrangement deviation and grain size of constituent layers. The observation and quantitative analysis of fatigue cracking behavior of the Cu/W multilayers with a layer thickness of 5 and 20 nm was conducted to verify the model.

Copyright

Corresponding author

Address all correspondence to Guang-Ping Zhang at gpzhang@imr.ac.cn

References

Hide All
1.Zhang, J.Y., Liu, G., and Sun, J.: Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: deformation-induced devitrification. Acta Mater. 66, 22 (2014).
2.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu∕Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).
3.Haseeb, A.S.M.A., Celis, J.P., and Roos, J.R.: Fretting wear of metallic multilayer films. Thin Solid Films 444, 199 (2003).
4.Zhou, Q., Zhang, S., Wei, X., Wang, F., Huang, P., and Xu, K.: Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. J. Alloys Compd. 742, 45 (2018).
5.Zhang, C., Feng, K., Li, Z., Lu, F., Huang, J., Wu, Y., and Chu, P.K.: Enhancement of high-temperature strength of Ni-based films by addition of nano-multilayers and incorporation of W. Acta Mater. 133, 55 (2017).
6.Li, Y.P., Tan, J., and Zhang, G.P.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scripta Mater. 59, 1226 (2008).
7.Zhang, J.Y., Lei, S., Liu, Y., Niu, J.J., Chen, Y., Liu, G., Zhang, X., and Sun, J.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater. 60, 1610 (2012).
8.Zhu, X.F., Li, Y.P., Zhang, G.P., Tan, J., and Liu, Y.: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).
9.Zhang, J.Y., Zhang, X., Liu, G., Zhang, G.J., and Sun, J.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng., A 528, 2982 (2011).
10.Evans, A.G., Rühle, M., Dalgleish, B.J., and Charalambides, P.G.: The fracture energy of bimaterial interfaces. Mater. Sci. Eng., A 126, 53 (1990).
11.Foecke, T. and Kramer, D.E.: In situ TEM observations of fracture in nanolaminated metallic thin films. Int. J. Fract. 119, 351 (2003).
12.Dang, C., Yao, Y., Olugbade, T., Li, J., and Wang, L.: Effect of multi-interfacial structure on fracture resistance of composite TiSiN/Ag/TiSiN multilayer coating. Thin Solid Films 653, 107 (2018).
13.Verma, N. and Jayaram, V.: Role of interface curvature on stress distribution under indentation for ZrN/Zr multilayer coating. Thin Solid Films 571, 283 (2014).
14.Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).
15.Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).
16.Zhu, X.F. and Zhang, G.P.: Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J. Phys. D: Appl. Phys. 42, 055411 (2009).
17.Anwar Ali, H.P., Radchenko, I., Li, N., and Budiman, A.: The roles of interfaces and other microstructural features in Cu/Nb nanolayers as revealed by in situ beam bending experiments inside an scanning electron microscope (SEM). Mater. Sci. Eng., A 738, 253 (2018).
18.Watanabe, T. and Tsurekawa, S.: Toughening of brittle materials by grain boundary engineering. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 387, 447 (2004).
19.Zhao, Y. and Zhou, J.: Tungsten content and grain boundary misorientation angle effect on crack blunting in nanocrystalline Ni-W alloy. J. Nanopart. Res. 19, 406 (2017).
20.Guo, W., Meng, Y., Zhang, X., Bedekar, V., Bei, H., Hyde, S., Guo, Q., Thompson, G.B., Shivpuri, R., Zuo, J.-m, and Poplawsky, J.D.: Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization. Acta Mater. 152, 107 (2018).
21.Daniel, R., Meindlhumer, M., Baumegger, W., Zalesak, J., Sartory, B., Burghammer, M., Mitterer, C., and Keckes, J.: Grain boundary design of thin films: using tilted brittle interfaces for multiple crack deflection toughening. Acta Mater. 122, 130 (2017).
22.Bokov, A., Zhang, S., Feng, L., Dillon, S.J., Faller, R., and Castro, R.H.R.: Energetic design of grain boundary networks for toughening of nanocrystalline oxides. J. Eur. Ceram. Soc. 38, 4260 (2018).
23.Daniel, R., Meindlhumer, M., Zalesak, J., Sartory, B., Zeilinger, A., Mitterer, C., and Keckes, J.: Fracture toughness enhancement of brittle nanostructured materials by spatial heterogeneity: a micromechanical proof for CrN/Cr and TiN/SiOx multilayers. Mater. Design 104, 227 (2016).
24.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
25.Padilla, H.A. and Boyce, B.L.: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5 (2010).
26.Chen, Y., Liu, Y., Sun, C., Yu, K.Y., Song, M., Wang, H., and Zhang, X.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60, 6312 (2012).
27.Dai, C.Y., Zhu, X.F., and Zhang, G.P.: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).
28.Zheng, S.X., Luo, X.M., Wang, D., and Zhang, G.P.: A novel evaluation strategy for fatigue reliability of flexible nanoscale films. Mater. Res. Express 5, 8 (2018).
29.Lopes, C., Vieira, M., Borges, J., Fernandes, J., Rodrigues, M.S., Alves, E., Barradas, N.P., Apreutesei, M., Steyer, P., Tavares, C.J., Cunha, L., and Vaz, F.: Multifunctional Ti-Me (Me = Al, Cu) thin film systems for biomedical sensing devices. Vacuum 122, 353 (2015).
30.Bull, S.J. and Jones, A.M.: Multilayer coatings for improved performance. Surf. Coat. Technol. 78, 173 (1996).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed