Skip to main content Accessibility help
×
Home

Mesocrystal-embedded functional oxide systems

  • Jan-Chi Yang (a1), Heng-Jui Liu (a2) and Ying-Hao Chu (a3) (a4)

Abstract

Mesocrystal—a new class of crystals compared with conventional single crystals and randomly distributed nanocrystal systems—has captured significant attention in recent decades. Current studies have been focused on the advanced synthesis as well as the intriguing properties of mesocrystal. In order to create new opportunities upon functional mesocrystals, they can be regarded as a new functional entirety when integrated with unique matrix environments. The elegant combination of mesocrystals and matrices has enabled researchers to realize enthralling tunabilities and to derive new functionalities that cannot be found in individual components. Therefore, mesocrystal-embedded system forms a new playground towards multifunctionalities. This review article delivers a general roadmap that portrays the enhancement of intrinsic properties and new functionalities driven by novel mesocrystal-embedded oxide systems. An in-depth understanding and breakthroughs achieved in mesocrystal-embedded oxide systems are highlighted. This article concludes with a brief discussion on potential directions and perspectives along this research field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mesocrystal-embedded functional oxide systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mesocrystal-embedded functional oxide systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mesocrystal-embedded functional oxide systems
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to J.-C. Yang at kjyang1120@gmail.com, H.-J. Liu at abura15@gmail.com and Y.-H. Chu at yhc@nctu.edu.tw

References

Hide All
1. Cölfen, H. and Antonietti:, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed. Engl. 44, 5576 (2005).
2. Kulak, A.N., Iddon, P., Li, Y., Armes, S.P., Cölfen, H., Paris, O., Wilson, R.M., and Meldrum, F.C.J.: Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization. Am. Chem. Soc. 129, 3729 (2007).
3. Ma, J.M., Teo, J., Mei, L., Zhong, Z.Y., Li, Q.H., Wang, T.H., Duan, X.C., Lian, J.B., and Zheng, W.J.: Porous platelike hematite mesocrystals: synthesis, catalytic and gas-sensing applications. J. Mater. Chem. 22, 11694 (2012).
4. Fang, J.X., Ding, B.J., and Gleiter, H.: Mesocrystals: syntheses in metals and applications. Chem. Soc. Rev. 40, 5347 (2011).
5. Liu, Z., Wen, X.D., Wu, X.L., Gao, Y.J., Chen, H.T., Zhu, J., and Chu, P.K.: Intrinsic dipole-field-driven mesoscale crystallization of core–shell ZnO Mesocrystal microspheres. J. Am. Chem. Soc. 131, 9405 (2009).
6. Polleux, J., Pinna, N., Antonietti, M., and Niederberger, M.: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 (2005).
7. Oaki, Y. and Imai, H.: Biomimetic morphological design for manganese oxide and cobalt hydroxide nanoflakes with a mosaic interior. J. Mater. Chem. 17, 316 (2007).
8. Mo, M.S., Lim, S.H., Mai, Y.W., Zheng, R.K., and Ringer, S.P.: In situ self-assembly of thin ZnO nanoplatelets into hierarchical mesocrystal microtubules with surface grafting of nanorods: a general strategy towards hollow mesocrystal structures. Adv. Mater. 20, 339 (2008).
9. Hu, X.L., Gong, J.M., Zhang, L.Z., and Yu, J.C.: Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 20, 4845 (2008).
10. Ryan, K.M., Mastroianni, A., Stancil, K.A., Liu, H.T., and Alivisatos, A.P.: Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479 (2006).
11. Kang, C.C., Lai, C.W., Peng, H.C., Shyue, J.J., and Chou, P.T.: 2D self-bundled cds nanorods with micrometer dimension in the absence of an external directing process. ACS Nano 2, 750 (2008).
12. Zhou, L., Wang, W.Z., and Xu, H.L.: Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy. Cryst. Growth Des. 8, 728 (2008).
13. Gong, Q., Qian, X.F., Ma, X.D., and Zhu, Z.K.: Large-scale fabrication of novel hierarchical 3D CaMoO4 and SrMoO4 mesocrystals via a microemulsion-mediated route. Cryst. Growth Des. 6, 1821 (2006).
14. Zhang, C., Chen, J., Zhou, Y.C., and Li, D.Q.: Ionic liquid-based “all-in-one” synthesis and photoluminescence properties of lanthanide fluorides. Phys. Chem. C 112, 10083 (2008).
15. Yang, C.S., Chen, C.J., and Lin, X.H.: Morphology evolution of GaPO4 mesocrystals in a nonionic triblock copolymer system by pH-dependent control. New J. Chem. 31, 363 (2007).
16. Wohlrab, S., Pinna, N., Antonietti, M., and Cölfen:, H. Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures. Chem. Eur. J. 11, 2903 (2005).
17. Zhang, G.G.Z., Paspal, S.Y.L., Suryanarayanan, R., and Grant, D.J.W.: Racemic species of sodium ibuprofen: Characterization and polymorphic relationships. J. Pharm. Sci. 92, 1356 (2003).
18. Liao, S.C., Tsai, P.Y., Liu, H.J., Liang, C.W., Yang, J.C., Lin, S.J., Lai, C.H., and Chu, Y.H.: Misorientation control and functionality design of nanopillars in self-assemble perovskite-spinel hetero-epitaxial nanostructures. ACS Nano 5, 4118 (2011).
19. Zheng, H., Zhan, Q., Zavaliche, F., Sherburne, M., Straub, F., Cruz, M.P., Chen, L.-Q., Dahmen, U., and Ramesh, R.: Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).
20. Liu, H.-J., Liang, W.-I., Chu, Y.-H., Zheng, H., and Ramesh, R.: Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. MRS Commun. 4, 31 (2014).
21. Liu, H.-J., Liu, Y.-Y., Tsai, C.-Y., Liao, S.-C., Chen, Y.-J., Lin, H.-J., Lai, C.-H., Hsieh, W.-F., Li, J.-Y., Chen, C.-T., He, Q., and Chu, Y.-H.: Tuning the functionalities of a mesocrystal via structural coupling. Sci. Rep. 5, 12073 (2015).
22. Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).
23. Liu, H.-J., Chen, L.-Y., He, Q., Liang, C.-W., Chen, Y.-Z., Chien, Y.-S., Hsieh, Y.-H., Lin, S.-J., Arenholz, E., Luo, C.-W., Chueh, Y.-L., Chen, Y.-C., and Chu, Y.-H.: Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952 (2012).
24. Bojahr, A., Schick, D., Maerten, L., Herzog, M., Vrejoiu, I., von Korff Schmising, C., Milne, C., Johnson, S.L., and Bargheer, M.: Comparing the oscillation phase in optical pump-probe spectra to ultrafast x-ray diffraction in the metal-dielectric SrRuO3/SrTiO3 superlattice. Phys. Rev. B 85, 224302 (2012).
25. Woerner, M., Korff Schmising, C.V., Bargheer, M., Zhavoronkov, N., Vrejoiu, I., Hesse, D., Alexe, M., and Elsaesser, T.: Ultrafast structural dynamics of perovskite superlattices. Appl. Phys. A 96, 83 (2009).
26. Korff Schmising, C.V., Harpoeth, A., Zhavoronkov, N., Ansari, Z., Aku-Leh, C., Woerner, M., Elsaesser, T., Bargheer, M., Schmidbauer, M., Vrejoiu, I., Hesse, D., and Alexe, M.: Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404 (2008).
27. Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.-L., Hao, D., and Ramesh, R.: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).
28. Chang, W.S., Liu, H.J., Tra, V.T., Chen, J.W., Wei, T.C., Tzeng, W.Y., Zhu, Y.M., Kuo, H.H., Hsieh, Y.H., Lin, J.C., Zhan, Q., Luo, C.W., Lin, J.Y., He, J.H., Wu, C.L., and Chu, Y.H.: Tuning electronic transport in a self-assembled nanocomposite. ACS Nano 8, 6242 (2014).
29. Zener, C.: Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951).
30. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La– Ca–Mn–O films. Science 264, 413 (1994).
31. Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., and Geballe, T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996).
32. Gross, R., Alff, L., Büchner, B., Freitag, B.H., Höfener, C., Klein, J., Lu, Y., Mader, W., Philipp, J.B., Rao, M.S.R., Reutler, P., Ritter, S., Thienhaus, S., Uhlenbruck, S., and Wiedenhorst:, B. Physics of grain boundaries in the colossal magnetoresistance manganites. J. Magn. Magn. Mater. 211, 150 (2000).
33. Huang, Y.H., Karppinen, M., Yamauchi, H., and Goodenough, J.B.: Effect of high-pressure annealing on magnetoresistance in manganese perovskites. J. Appl. Phys. 98, 033911 (2005).
34. Hwang, H.Y., Cheong, S.W., Ong, N.P., and Batlogg, B.: Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3 . Phys. Rev. Lett. 77, 2041 (1996).
35. Chen, A., Bi, Z., Tsai, C.-F., Lee, J., Su, Q., Zhang, X., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).
36. Liu, H.J., Tra, V.T., Chen, Y.J., Huang, R., Duan, C.G., Hsieh, Y.H., Lin, H.J., Lin, J.Y., Chen, C.T., Ikuhara, Y., and Chu, Y.H.: Large magneto-resistance in magnetically coupled SrRuO3–CoFe2O4 self assembled nanostructures. Adv. Mater. 25, 4753 (2013).
37. Yang, J.C., He, Q., Zhu, Y.M., Lin, J.C., Liu, H.J., Hsieh, Y.H., Wu, P.C., Chen, Y.L., Lee, S.F., Chin, Y.Y., Lin, H.J., Chen, C.T., Zhan, Q., Arenholz, E., and Chu, Y.H.: Magnetic mesocrystals-assisted magnetoresistance in manganite. Nano Lett. 14, 6073 (2014).
38. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).
39. Zhou, J.P., He, H., Shi, Z., and Nan, C.W.: Magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 double-layer thin film prepared by pulsed-laser deposition. Appl. Phys. Lett. 88, 013111 (2006).
40. He, H.C., Zhou, J.P., Wang, J., and Nan, C.W.: Multiferroic Pb(Zr0.52Ti0.48)O3–Co0.9Zn0.1Fe2O4 bilayer thin films via a solution processing. Appl. Phys. Lett. 89, 052904 (2006).
41. He, H.C., Wang, J., Zhou, J.P., and Nan, C.W.: Ferroelectric and ferromagnetic behavior of Pb(Zr0.52Ti0.48)O3–Co0.9Zn0.1Fe2O4 multilayered thin films prepared via solution processing. Adv. Funct. Mater. 17, 1333 (2007).
42. Crane, S.P., Bihler, C., Brandt, M.S., Goennenwein, S.T.B., Gajek, M., and Ramesh, R.: Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321, L5L9 (2009).
43. Vrejoiu, I., Preziosi, D., Morelli, A., and Pippel, E.: Multiferroic PbZr x Ti1−x O3/Fe3O4 epitaxial sub-micron sized structures. Appl. Phys. Lett. 100, 102903 (2012).
44. Zavaliche, F., Zheng, H., Mohaddes-Ardabili, L., Yang, S.Y., Zhan, Q., Shafer, P., Reilly, E., Chopdekar, R., Jia, Y., Wright, P., Schlom, D.G., Suzuki, Y., and Ramesh, R.: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).
45. Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).
46. Ramesh, R., and Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
47. Yang, J.C., Chu, Y.H., and Ramesh, R.: Multiferroic thin films. Wiley Encycl. Electr. Electron. Eng. 115 (2015).
48. Dan'kov, S.Y., Tishin, A.M., Pecharsky, V.K., and Gschneidner, K.A. Jr.: Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 57, 3478 (1998).
49. Dong, Q.Y., Shen, B.G., Chen, J., Shen, J., Zhang, H.W., and Sun, J.R.: magnetic entropy change and refrigerant capacity in GdFeAl compound. J. Appl. Phys. 105, 07A305 (2009).
50. Phan, M.H. and Yu, S.C.: Review of magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007).
51. Brück, E., Tegus, O., Cam Thanh, D.T., Trung, N.T., and Buschow, K.H.J.: A review on Mn based materials for magnetic refrigeration: structure and properties. Int. J. Refrig. 31, 763 (2008).
52. Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., and Gutfleisch, O.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620 (2012).
53. Franco, V., Blázquez, J.S., Ingale, B., and Conde:, A. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305 (2012).
54. Morelli, D.T., Mance, A.M., Mantese, J.V., and Micheli, A.L.: Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79, 373 (1996).
55. Kumar, V.S., Yang, J.C., Zhu, Y.M., Chin, Y.Y., Lin, H.J., Chen, C.T., Zhan, Q., He, Q., Chen, Y.C., and Chu, Y.H.: Enhanced magnetocaloric effect driven by interfacial magnetic coupling in self-assembled Mn3O4–La0.7Sr0.3MnO3 nanocomposites. ACS Appl. Mater. Interfaces 7, 26504 (2015).
56. Do, T.H., Van, C.N., Tsai, K.A., Quynh, L.T., Chen, J.W., Lin, Y.C., Chen, Y.C., Chou, W.C., Wu, C.L., Hsu, Y.J., and Chu, Y.H.: Superior photoelectrochemical activity of self-assembled NiWO4–WO3 heteroepitaxy. Nano Energy 23, 153 (2016).
57. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., and Triscone, J.-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
58. Heish, Y.H., Liou, J.M., Huang, B.C., Liang, C.W., He, Q., Zhan, Q., Chiu, Y.P., Chen, Y.C., and Chu, Y.H.: Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4654 (2012).
59. Hsieh, Y.H., Strelcov, E., Liou, J.M., Shen, C.Y., Chen, Y.C., Kalinin, S.V., and Chu, Y.H.: Electrical modulation of the local conduction at oxide tubular interfaces. ACS Nano 7, 8627 (2013).
60. Chien, T.Y., Chakhalian, J., Freeland, J.W., and Guisinger, N.P.: Cross-sectional scanning tunneling microscopy applied to complex oxide interfaces. Adv. Func. Mater. 23, 2565 (2013).
61. Chien, T.Y., Kourkoutis, L.F., Chakhalian, J., Gray, B., Kareev, M., Guisinger, N.P., Muller, D.A., and Freeland, J.W.: Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nat. Commun. 4, 2336 (2013).
62. Huang, B.C., Chen, Y.T., Chiu, Y.P., Huang, Y.C., Yang, J.C., Chen, Y.C., and Chu, Y.H.: Direct observation of ferroelectric polarization-modulated band bending at oxide interfaces. Appl. Phys. Lett. 100, 122903 (2012).
63. Huang, B.C., Chiu, Y.P., Huang, P.C., Wang, W.C., Tra, V.T., Yang, J.C., He, Q., Lin, J.Y., Chang, C.S., and Chu, Y.H.: Mapping band alignment across complex oxide heterointerfaces. Phys. Rev. Lett. 109, 246807 (2012).
64. Rodriguez, B.J., Jesse, S., Baddorf, A.P., Zhao, T., Chu, Y.-H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., and Kalinin, S.V.: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).
65. MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., and Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x + BaZrO3 . Nat. Mater. 3, 439 (2004).
66. Slutsker, J., Levin, I., Li, J., Artemev, A., and Roytburd, A.L.: Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 (2006).
67. Li, J., Levin, I., Slutsker, J., Provenzano, V., Schenck, P.K., Ramesh, R., Ouyang, J., and Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).
68. Zhao, T., Scholl, A., Zavaliche, F., Zheng, H., Barry, M., Doran, A., Lee, K., Cruz, M.P., and Ramesh, R.: Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures. Appl. Phys. Lett. 90, 123104 (2007).
69. Dix, N., Muralidharan, R., Guyonnet, J., Warot-Fonrose, B., Varela, M., Paruch, P., Sánchez, F., and Fontcuberta, J.: On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95, 062907 (2009).
70. Comes, R., Liu, H., Khokhlov, M., Kasica, R., Lu, J., and Wolf, S.A.: Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).
71. Zhan, Q., Yu, R., Crane, S.P., Zheng, H., Kisielowski, C., and Ramesh, R.: Structure and interface chemistry of perovskite–spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).
72. Zhao, R., Li, W., Lee, J.H., Choi, E.M., Liang, Y., Zhang, W., Tang, R., Wang, H., Jia, Q., MacManus-Driscoll, J.L., and Yang, H.: Precise tuning of (YBa2Cu3O7−δ)1−x :(BaZrO3) x thin film nanocomposite structures. Adv. Funct. Mater. 24, 5240 (2014).
73. Zhang, W., Ramesh, R., MacManus-Driscoll, J.L., and Wang, H.: Multifunctional, self-assembled oxide nanocomposite thin films and devices. MRS Bull. 40, 736 (2015).
74. Wong, H.S.P., Lee, H.Y., Yu, S.M., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., and Tsai, M.J.: Metal-oxide RRAM. Proc. IEEE 100, 1951 (2012).
75. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J. and Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).
76. Look, D.C.: Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80B, 383 (2001).
77. Chopra, K.L., Major, S., and Pandya, D.K.: Transparent conductors—a status review. Thin Solid Films 102, 1 (1983).
78. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292, 1897 (2001).
79. Wang, Z., Zhou, L., Wen, X., and Lou, D.: Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903 (2012).
80. Yamazoe, N.: Toward innovations of gas sensor technology. Sens. Actuator B—Chem. 108, 2 (2005).
81. Groner, M.D., Fabreguette, F.H., Elam, J.W., and George, S.M.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639 (2004).
82. Zhang, H.G., Zhu, Q.S., Zhang, Y., Wang, Y., Zhao, L., Yu, B.: One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17, 2766 (2007).
83. Yu, X., Marks, T.J., and Facchetti, A.: Metal oxides for optoelectronic applications. Nat. Mater. 15, 383 (2016).
84. Eshghinejad, A., Liang, W.I., Chen, Q.N., Ma, F., Liu, Y., Xie, S., Chu, Y.H., and Li, J.: Piezoelectric and piezomagnetic force microscopies of multiferroic BiFeO3–LiMn2O4 heterostructures. J. Appl. Phys. 116, 066805 (2014).
85. Liang, W.I., Liu, Y.M., Liao, S.C., Wang, W.C., Liu, H.J., Lin, H.J., Chen, C.T., Lai, C.H., Borisevich, A., Arenholz, E., Li, J.Y., and Chu, Y.H.: Design of magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction. J. Mater. Chem. C 2, 811 (2014).
86. Liao, S.C., Chen, Y.L., Kuo, W.C., Cheung, J., Wang, W.C., Cheng, X., Chin, Y.Y., Chen, Y.Z., Liu, H.J., Lin, H.J., Chen, C.T., Juang, J.Y., Chueh, Y.L., Valanoor, N., Chu, Y.H., and Lai, C.H.: Self-assembled epitaxial core-shell nanocrystal with tunable magnetic anisotropy. Small 11, 4117 (2015).
87. Thouless, D.J.: Quantization of particle transport. Phys. Rev. B 27, 6083 (1983).
88. Onoda, S., Murakami, S., and Nagaosa, N.: Topological nature of polarization and charge pumping in ferroelectrics. Phys. Rev. Lett. 93, 167602 (2004).
89. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).
90. Lee, P.A. and Ramakrishnan, T.V.: Disordered electronic systems. Rev. Mod. Phys. 57, 287 (1985).
91. Onoda, S., Chern, C.H., Murakami, S., Ogimoto, Y., and Nagaosa, N.: Disorder-enhanced dielectric response of nanoscale and mesoscopic insulators. Phys. Rev. Lett. 97, 266807 (2006).
92. Bibes, M. and Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425 (2008).
93. Ramesh, R.: Ferroelectrics: a new spin on spintronics. Nat. Mater. 9, 380 (2010).
94. Matsukura, F., Tokura, Y., and Ohno, H.: Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209 (2015).
95. Stratulat, S.M., Lu, X., Morelli, A., Hesse, D., Erfurth, W., and Alexe, M.: Nucleation-induced self-assembly of multiferroic BiFeO3–CoFe2O4 nanocomposites. Nano Lett. 13, 3884 (2013).
96. Choi, H.K., Aimon, N., Kim, D.H., Sun, X.Y., Gwyther, J., Manners, I., and Ross, C.A.: Hierarchical templating of a BiFeO3–CoFe2O4 mutiferroic nanocomposite by a triblock terpolymer film. ACS Nano 8, 9248 (2014).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed