Skip to main content Accessibility help

Memristive response of a new class of hydrated vanadium oxide intercalation compounds

  • Justin L. Andrews (a1) (a2), Sujay Singh (a3), Colin Kilcoyne (a3), Patrick J. Shamberger (a2), G. Sambandamurthy (a3) and Sarbajit Banerjee (a1) (a2)...


The practical realization of energy-efficient computing vectors is imperative to address the break-down in the scaling of power consumption with transistor dimensions, which has led to substantial underutilized chip space. Memristive elements that encode information in multiple internal states and reflect the dynamical evolution of these states are a promising alternative. Herein we report the observation of pinched loop hysteretic type-II memristive behavior in single-crystalline nanowires of a versatile class of layered vanadium oxide bronzes with the composition δ-[M(H2O)4]0.25V2O5 (M = Co, Ni, Zn), the origin of which is thought to be the diffusion of protons in the interlayer regions.


Corresponding author

Address all correspondence to G. Sambandamurthy, Sarbajit Banerjee at,


Hide All
1.Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., and LeBlanc, A.R..: Design of ion-implanted MOSFET's with very small physical dimensions. Proc. IEEE 87, 668 (1999).
2.Taylor, M.B..: A landscape of the new dark silicon design regime. IEEE Micro 33, 8 (2013).
3.Zhou, Y. and Ramanathan, S..: Correlated electron materials and field effect transistors for logic: a review. Crit. Rev. Solid State Mater. Sci. 38, 286 (2013).
4.Chua, L.O., and Kang, S.M..: Memristive devices and systems. Proc. IEEE 64, 209 (1976).
5.Pershin, Y.V., and Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145 (2011).
6.Pickett, M.D., Medeiros-Ribeiro, G., and Williams, R.S..: A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114 (2013).
7.Kim, T.H., Jang, E.Y., Lee, N.J., Choi, D.J., Lee, K.J., Jang, J.T., Choi, J.S., Moon, S.H., and Cheon, J..: Nanoparticle assemblies as memristors. Nano Lett. 9, 2229 (2009).
8.Marley, P.M., Horrocks, G.A., Pelcher, K.E., and Banerjee, S..: Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chem. Commun. 51, 5181 (2015).
9.Ha, S.D. and Ramanathan, S..: Adaptive oxide electronics: a review. J. Appl. Phys. 110, 71101 (2011).
10.Sun, Z., Liao, T., Dou, Y., Hwang, S.M., Park, M.-S., Jiang, L., Kim, J.H., and Dou, S.X..: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014).
11.Driscoll, T., Kim, H.-T., Chae, B.-G., Kim, B.-J., Lee, Y.-W., Jokerst, N.M., Palit, S., Smith, D.R., Di Ventra, M., and Basov, D.N..: Memory metamaterials. Science 325, 1518 (2009).
12.Whittaker, L., Patridge, C.J., and Banerjee, S..: Microscopic and nanoscale perspective of the metal-insulator phase transitions of VO2: some new twists to an old tale. J. Phys. Chem. Lett. 2, 745 (2011).
13.Singh, S., Abtew, T.A., Horrocks, G., Kilcoyne, C., Marley, P.M., Stabile, A.A., Banerjee, S., Zhang, P., and Sambandamurthy, G..: Selective electrochemical reactivity of rutile VO2 towards the suppression of metal-insulator transition. Phys. Rev. B 93, 125132 (2016).
14.Shi, J., Ha, S.D., Zhou, Y., Schoofs, F., and Ramanathan, S..: A correlated nickelate synaptic transistor. Nat. Commun. 4, 3676 (2013).
15.Wu, T.-L., Stabile, A.A., Patridge, C.J., Banerjee, S., and Sambandamurthy, G..: Electrically driven metal-insulator switching in δ-KxV2O5 nanowires. Appl. Phys. Lett. 101, 163502 (2012).
16.Marley, P.M., Stabile, A.A., Kwan, C.P., Singh, S., Zhang, P., Sambandamurthy, G., and Banerjee, S..: Charge disproportionation and voltage-induced metal-insulator transitions evidenced in β-PbxV2O5 nanowires. Adv. Funct. Mater. 23, 153 (2013).
17.Marley, P.M., Singh, S., Abtew, T.A., Jaye, C., Fischer, D.A., Zhang, P., Sambandamurthy, G., and Banerjee, S..: Electronic phase transitions of δ-AgxV2O5 nanowires: Interplay between geometric and electronic structures. J. Phys. Chem. C 118, 21235 (2014).
18.Yan, B., and Maggard, P.A..: M(bipyridine)V4O10 (M = Cu, Ag): Hybrid analogues of low-dimensional reduced vanadates. Inorg. Chem. 46, 6640 (2007).
19.Marley, P.M., and Banerjee, S..: Reversible interconversion of a divalent vanadium bronze between δ and β quasi-1D structures. Inorg. Chem. 51, 5264 (2012).
20.Oka, Y., Yao, T., and Yamamoto, N..: Crystal structures of hydrated vanadium oxides with δ-Type V2O5 Layers: δ-M0.25V2O5·H2O, M, Ca, Ni. J. Solid State Chem. 329, 323 (1997).
21.Clites, M., Byles, B.W., and Pomerantseva, E..: Effect of aging and hydrothermal treatment on electrochemical performance of chemically pre-intercalated Na–V–O nanowires for Na-ion batteries. J. Mater. Chem. A 4, 7754 (2016).
22.Andrews, J.L., De Jesus, L.R., Tolhurst, T.M., Marley, P.M., Moewes, A., and Banerjee, S..: Intercalation-induced dimensional reduction and thickness-modulated electronic structure of a layered ternary vanadium oxide. Chem. Mater. 29, 3285 (2017).
23.Savel'ev, S.E., Alexandrov, A.S., Bratkovsky, A.M., and Williams, R.S..: Molecular dynamics simulations of oxide memristors: thermal effects. Appl. Phys. A Mater. Sci. Process. 102, 891 (2011).
24.Yao, T., Oka, Y., and Yamamoto, N..: Layered structures of hydrated vanadium oxides. Part 2. Alkali-metal Intercalates. J. Mater. Chem. 2, 337 (1992).
25.Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., and Williams, R.S..: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008).
26.Milic, N.B., and Jelic, R.M..: Hydrolysis of zinc(II) ion in sodium nitrate, chloride and perchlorate medium: the effect of the anionic medium. J. Chem. Soc., Dalt. Trans. 3, 3597 (1995).
27.Giasson, G., and Tewari, P.H..: Hydrolysis of Co(II) at elevated temperatures. Can. J. Chem. 56, 435 (1978).
28.Baes, C.F., and Mesmer, R.S..: The hydrolysis of cations. Ber. Bunsenges. Phys. Chemie 81, 245 (1977).
29.Parija, A., Prendergast, D., and Banerjee, S..: Evaluation of multivalent cation insertion in single- and double-layered polymorphs of V2O5. ACS Appl. Mater. Interfaces 9, 23756 (2017).
30.Nightingale, E.R..: Phenomenological theory of ion solvation. Effective Radii of hydrated ions. J. Phys. Chem. 63, 1381 (1959).
Type Description Title
Supplementary materials

Andrews supplementary material
Andrews supplementary material

 Word (1.7 MB)
1.7 MB

Memristive response of a new class of hydrated vanadium oxide intercalation compounds

  • Justin L. Andrews (a1) (a2), Sujay Singh (a3), Colin Kilcoyne (a3), Patrick J. Shamberger (a2), G. Sambandamurthy (a3) and Sarbajit Banerjee (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed