Skip to main content Accessibility help

Mechanically modulated electronic properties of water-filled fullerenes

  • K. Min (a1), A. Barati Farimani (a1) and N. R. Aluru (a1)


We report on electronic properties of water-filled fullerenes [H2O(n)@C60, H2O(n)@C180, and H2O(n)@C240] under mechanical deformation using density functional theory. Under a point load, energy gap change of empty and water-filled fullerenes is investigated. For C60 and H2O(n)@C60, the energy gap decreases as the tensile strain increases. For H2O(n)@C60, under compression, the energy gap decreases monotonously while for C60, it first decreases and then increases. Similar behavior is observed for other empty (C180 and C240) and water-filled [H2O(n)@C180 and H2O(n)@C240] fullerenes. The energy gap decrease of water-filled fullerenes is due to the increased interaction between water and carbon wall under deformation.


Corresponding author

Address all correspondence K. Min


Hide All
1.Kurotobi, K. and Murata, Y.: A single molecule of water encapsulated in fullerene C60. Science 333, 613 (2011).
2.Weidinger, A., Waiblinger, M., Pietzak, B., and Murphy, T.A.: Atomic nitrogen in C60: N@ C60. Appl. Phys. A 66, 287 (1998).
3.Pupysheva, O.V., Farajian, A.A., and Yakobson, B.I.: Fullerene nanocage capacity for hydrogen storage. Nano Lett. 8, 767 (2007).
4.Shen, H.: The compressive mechanical properties of C60 and endohedral M@ C60 (M=Si, Ge) fullerene molecules. Mater. Lett. 60, 2050 (2006).
5.Min, K., Farimani, A.B., and Aluru, N.: Mechanical behavior of water filled C60. Appl. Phys. Lett. 103, 263112 (2013).
6.Farimani, A.B., Wu, Y., and Aluru, N.: Rotational motion of a single water molecule in a buckyball. Phys. Chem. Chem. Phys. 15, 17993 (2013).
7.Rivelino, R. and de Brito Mota, F.: Band gap and density of states of the hydrated C60 fullerene system at finite temperature. Nano Lett. 7, 1526 (2007).
8.Kawahara, S.L., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Smogunov, A., and Barreteau, C.: Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett. 12, 4558 (2012).
9.Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., and Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301 (2008).
10.Yang, L., Anantram, M., Han, J., and Lu, J.: Band-gap change of carbon nanotubes: effect of small uniaxial and torsional strain. Phys. Rev. B 60, 13874 (1999).
11.Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V., and Stesmans, A.: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43 (2012).
12.Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).
13.Dumitrică, T., Belytschko, T., and Yakobson, B.I.: Bond-breaking bifurcation states in carbon nanotube fracture. Journal of Chem. Phys. 118, 9485 (2003).
14.Leu, P.W., Svizhenko, A., and Cho, K.: Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).
15.Topsakal, M. and Ciraci, S.: Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys. Rev. B 81, 024107 (2010).
16.Ye, W., Min, K., Martin, P.P., Rockett, A.A., Aluru, N., and Lyding, J.W.: Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si (100)-2× 1: H surface. Surf. Sci. 609, 147 (2012).
17.Kumar, B., Min, K., Bashirzadeh, M., Farimani, A.B., Bae, M.-H., Estrada, D., Kim, Y.D., Yasaei, P., Park, Y.D., and Pop, E.: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013).
18.Farimani, A.B., Min, K., and Aluru, N.R.: DNA base detection using a single-layer MoS2. ACS Nano 8, 7914 (2014).
19.Seidl, A., Görling, A., Vogl, P., Majewski, J.A., and Levy, M.: Generalized Kohn–Sham schemes and the band-gap problem. Phys. Rev. B 53, 3764 (1996).
20.Lany, S. and Zunger, A.: Many-body GW calculation of the oxygen vacancy in ZnO. Phys. Rev. B 81, 113201 (2010).
21.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
22.Hammer, B., Hansen, L.B., and Nørskov, J.K.: Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).
23.Troullier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).
24.Valentini, P., Gerberich, W., and Dumitrică, T.: Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 99, 175701 (2007).
25.Calaminici, P., Geudtner, G., and Köster, A.M.: First-principle calculations of large fullerenes. J. Chem. Theory Comput. 5, 29 (2008).
26.Zope, R.R. and Baruah, T., Pederson, M.R. and Dunlap, B.: Static dielectric response of icosahedral fullerenes from C_ {60} to C_ {2160} characterized by an all-electron density functional theory. Phys. Rev. B 77, 115452 (2008).
27.Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155 (2003).
Type Description Title
Supplementary materials

Min supplementary material
Min supplementary material 1

 Word (391 KB)
391 KB

Mechanically modulated electronic properties of water-filled fullerenes

  • K. Min (a1), A. Barati Farimani (a1) and N. R. Aluru (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed