Skip to main content Accessibility help
×
Home

Mechanical and failure behaviors of lattice–plate hybrid structures

  • Zhigang Liu (a1), Ping Liu (a1), Wei Huang (a2), Wei Hin Wong (a1), Athanasius Louis Commillus (a1) and Yong-Wei Zhang (a1)...

Abstract

The authors design six alumina hybrid structures consisting of stretching-dominated plates and different space-filling lattices comprised of hollow tubes and perform finite element simulations to study mechanical and failure behaviors of such hybrid structures. The authors investigate the effects of three geometrical parameters on the stiffness and failure of these hybrid structures and further compare their advantages and disadvantages. The authors find that the failure modes of these hybrid structures can be tuned by altering cell unit type and geometrical parameters. Among these hybrid structures, the ones with effective support from the lattice unit cells in the stretching direction exhibit better specific stiffness and strength. By varying the lattice and plate thickness, the authors find that the relations between stiffness/failure strength and density follow a power law. When intrinsic material failure occurs, the power law exponent is 1; when buckling failure arises, the power law exponent is 3. However, by varying tube thickness, their relations follow unusual power relations with the exponent changing from nearly 0 to nearly infinity. In addition, the hybrid structures also exhibit defect insensitivity. This study shows that such hybrid structures are able to greatly expand the design space of architectured cellular materials for engineering applications.

Copyright

Corresponding author

Address all correspondence to Ping Liu at liuping@ihpc.a-star.edu.sg

References

Hide All
1.Schaedler, T.A., Jacobsen, A.J., and Carter, W.B.: Toward lighter, stiffer materials. Science 341, 11811182 (2013).
2Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997).
3.Evans, A.G., Hutchinson, J.W., and Ashby, M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171221 (1999).
4.Wadley, H.B.G., Fleck, N.A., and Evans, A.G.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 23312343 (2003).
5.Deshpande, V.S., Fleck, N.A., and Ashby, M.F.: Effective properties of the octet truss lattice material. J. Mech. Phys. Solids 49, 17471769 (2001).
6.Wadley, H.N.G.: Multifunctional periodic cellular metals. Philos. Trans. R. Soc. A 364, 3168 (2006).
7.Deshpande, V.S., Ashby, M.F., and Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 10351040 (2001).
8.Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., and Carter, W.B.: Ultralight metallic microlattices. Science 334, 962965 (2011).
9.Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., and Kraft, O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 24532458 (2014).
10.Eckel, Z.C., Zhou, C., Martin, J.H., Jacobsen, A.J., Carter, W.B., and Schaedler, T.A.: Additive manufacturing of polymer derived ceramics. Science 351, 5862 (2016).
11.George, T., Deshpande, V.S., and Wadley, H.N.G.: Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Composites Part A 47, 3140 (2013).
12.Cheung, K.C., and Gershenfeld, N.: Reversibly assembled cellular composite materials. Science 341, 12192121 (2013).
13.Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 13731377 (2014).
14.Dinwiddie, R.B., Dehoff, R.R., Lloyd, P.D., Lowe, L.E., and Ulrich, J.B.: Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. Proc. SPIE 8705, 87050K (2013).
15.Wicks, N., and Hutchinson, J.W.: Optimal truss plates. Int. J. Solids Struct. 38, 51655183 (2001).
16.Valdevit, L., Hutchinson, J.W., and Evans, A.G.: Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 41, 51055124 (2004).
17.Valdevit, L., Pantano, A., Stone, H.A., and Evans, A.G.: Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int. J. Heat Mass Transf. 49, 38193830 (2006).
18.Bendsoe, M.P., and Sigmund, O.: Topology Optimization (Springer, Berlin, 2002).
19.Christensen, P.W., and Klabering, A.: An Introduction to Structural Optimization (Springer, Berlin, 2008).
20.Altair Engineering Inc. Altair OptiStruct. http://www.altairhyperworks.com/Product (2013).
21.Autodesk Inc. Autodesk Within. http://www.withinlab.com/software/new_index.php (2015).
22.Liu, Z.G., Liu, P., Huang, W., Wong, W.H., Commillus, A.L., and Zhang, Y.W.: A nanolattice-plate hybrid structure to achieve a nearly linear relation between stiffness/strength and density. Mater. Design 160, 496502 (2018).
23.Fleck, N.A., Deshpande, V.S., and Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 24952516 (2010).
24.Rehme, O.: Cellular design for laser freeform fabrication, Ph.D. Thesis, Hamburg-Harburg, Technical University, 2009.
25.Andrews, E.W., Gioux, G., Onck, P.R., and Gibson, L.J.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701713 (2001).
26.Kesler, O. and Gibson, L.J.: Size effects in metallic foam core sandwich beams. Mater. Sci. Eng., A 326, 228234 (2002).
27.Dai, G. and Zhang, W.: Size effects of effective Young's modulus for periodic cellular materials. Sci. China, Ser. G: Phys., Mech. Astron. 52, 12621270 (2009).
28.Onck, P.R., Andrews, E.W., and Gibson, L.J.: Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681699 (2001).
29.Tekoglu, C. and Onck, P.R.: Size effects in the mechanical behavior of cellular materials. J. Mater. Sci. 40, 59115917 (2005).
30.ABAQUS Version 6.14. User's Manual Version 6.14 (Providence, RI, USA, 2014).
31.Gibson, L.J.: The mechanical behavior of cancellous bone. J. Biomech. 18, 317328 (1985).
32.Gibson, L.J. and Ashby, M.F.: The mechanics of two-dimensional cellular materials. Proc. R. Soc. A 382, 2542 (1982).
33.Gibson, L.J. and Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. A 382, 4359 (1982).
34.Gibson, L.J., Ashby, M.F., and Easterling, K.E.: Structure and mechanics of the iris leaf. J. Mater. Sci. 23, 30413048 (1988).
35.Gibson, L.J., Ashby, M.F., Karam, G.N., Wegst, U., and Shercliff, H.R.: The mechanical properties of natural materials II: microstructures for mechanical efficiency. Proc. R. Soc. A 450, 141162 (1995).
36.Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38, 377399 (2005).
37.Montemayor, L.C., Wong, W.H., Zhang, Y.W., and Greer, J.R.: Insensitivity to flaws leads to damage tolerance in brittle architected meta-materials. Sci. Rep. 6, 20570 (2016).
38.Mateos, A.J., Huang, W., Zhang, Y.W., and Greer, J.R.: Discrete-continuum duality of architected materials: failure, flaws, and fracture. Adv. Funct. Mater. 29, 1806772 (2019).
39.Abazari, A.M., Safavi, S.M., Rezazadeh, G., and Villanueva, L.G.: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15, 2854328562 (2015).
40.Greer, J.R., and Hosson, J.T.M.: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654724 (2011).

Mechanical and failure behaviors of lattice–plate hybrid structures

  • Zhigang Liu (a1), Ping Liu (a1), Wei Huang (a2), Wei Hin Wong (a1), Athanasius Louis Commillus (a1) and Yong-Wei Zhang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.