Skip to main content Accessibility help
×
Home

Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics

  • Rama K. Vasudevan (a1), Kamal Choudhary (a2), Apurva Mehta (a3), Ryan Smith (a2), Gilad Kusne (a2), Francesca Tavazza (a2), Lukas Vlcek (a4), Maxim Ziatdinov (a1) (a5), Sergei V. Kalinin (a1) and Jason Hattrick-Simpers (a2)...

Abstract

The use of statistical/machine learning (ML) approaches to materials science is experiencing explosive growth. Here, we review recent work focusing on the generation and application of libraries from both experiment and theoretical tools. The library data enables classical correlative ML and also opens the pathway for exploration of underlying causative physical behaviors. We highlight key advances facilitated by this approach and illustrate how modeling, macroscopic experiments, and imaging can be combined to accelerate the understanding and development of new materials systems. These developments point toward a data-driven future wherein knowledge can be aggregated and synthesized, accelerating the advancement of materials science.

Copyright

Corresponding author

Address all correspondence to Rama K. Vasudevan at vasudevanrk@ornl.gov

References

Hide All
1.Agrawal, A. and Choudhary, A.: Perspective: Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater. 4, 053208 (2016).
2.Gakh, A.A., Gakh, E.G., Sumpter, B.G., and Noid, D.W.: Neural network-graph theory approach to the prediction of the physical properties of organic compounds. J. Chem. Inf. Comput. Sci. 34, 832 (1994).
3.Sumpter, B.G., Getino, C., and Noid, D.W.: Neural network predictions of energy transfer in macromolecules. J. Phys. Chem. 96, 2761 (1992).
4.Nikiforov, M., Reukov, V., Thompson, G., Vertegel, A., Guo, S., Kalinin, S., and Jesse, S.: Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology 20, 405708 (2009).
5.Currie, K.R. and LeClair, S.R.: Self-improving process control for molecular beam epitaxy. Int. J. Adv. Manuf. Technol. 8, 244 (1993).
6.Bensaoula, A., Malki, H.A., and Kwari, A.M.: The use of multilayer neural networks in material synthesis. IEEE Trans. Semiconduct. Manuf. 11, 421 (1998).
7.Lee, K.K., Brown, T., Dagnall, G., Bicknell-Tassius, R., Brown, A., and May, G.S.: Using neural networks to construct models of the molecular beam epitaxy process. IEEE Trans. Semiconduct. Manuf. 13, 34 (2000).
8.Takeuchi, I., Koinuma, H., Amis, E.J., Newsam, J.M., Wille, L.T., and Buelens, C.: SYMPOSIUM S: Combinatorial and artificial intelligence methods in materials science. Mater. Res. Soc. Symp. Proc 700, 358371 (2002).
9.Bohannon, J.: Fears of an AI pioneer. Science 349, 252 (2015).
10.Sejnowski, T.J.: The Deep Learning Revolution (MIT Press, Cambridge, MA, 2018).
11.McCarthy, J., Minsky, M.L., Rochester, N., and Shannon, C.E.: A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine 27, 12 (2006).
12.LeCun, Y.: A theoretical framework for back-propagation. In Proceedings of the 1988 Connectionist Models Summer School, edited by Touresky, D., Hinton, G., and Sejnowski, T. (Morgan Kaufmann, CMU, Pittsburgh, PA, 1988) p. 21.
13.Boser, B.E., Guyon, I.M., and Vapnik, V.N.: A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory; ACM, Pittsburgh, PA, USA, 1992; p. 144.
14.LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning. Nature 521, 436 (2015).
15.Brodtkorb, A.R., Hagen, T.R., and Sætra, M.L.: Graphics processing unit (GPU) programming strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73, 4 (2013).
16.Rupp, K.: 42 Years of Microprocessor Trend Data, 2018. https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ (accessed July 17, 2019).
17.de Pablo, J.J., Jones, B., Kovacs, C.L., Ozolins, V., and Ramirez, A.P.: The materials genome initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid State Mater. Sci. 18, 99 (2014).
18.Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L., Sanvito, S., and Buongiorno-Nardelli, M.: AFLOWLIB. ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227 (2012).
19.Choudhary, K.: Jarvis-DFT, 2014. https://www.nist.gov/document/jarvis-dft1312017pdf (accessed July 17, 2019).
20.Kim, C., Chandrasekaran, A., Huan, T.D., Das, D., and Ramprasad, R.: Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 17575 (2018).
21.C. Informatics: Open Citrination Platform. https://citrination.com (accessed July 17, 2019).
22.Georgia Institute of Technology: Institute for Materials: Materials Innovation Network, 2019. https://matin.gatech.edu (accessed July 17, 2019).
23.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825 (2011).
24.Kalinin, S.V., Sumpter, B.G., and Archibald, R.K.: Big-deep-smart data in imaging for guiding materials design. Nat. Mater 14, 973 (2015).
25.Kusiak, A.: Smart manufacturing must embrace big data. Nat. News 544, 23 (2017).
26.Bonnet, N.: Artificial intelligence and pattern recognition techniques in microscope image processing and analysis. In Advances in Imaging and Electron Physics, edited by Hawkes, P.W. (Elsevier, San Diego, CA, 2000), pp. 1.
27.Nyshadham, C., Oses, C., Hansen, J.E., Takeuchi, I., Curtarolo, S., and Hart, G.L.: A computational high-throughput search for new ternary superalloys. Acta Mater. 122, 438 (2017).
28.Isayev, O., Fourches, D., Muratov, E.N., Oses, C., Rasch, K., Tropsha, A., and Curtarolo, S.: Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem. Mater. 27, 735 (2015).
29.de Pablo, J.J., Jackson, N.E., Webb, M.A., Chen, L.-Q., Moore, J.E., Morgan, D., Jacobs, R., Pollock, T., Schlom, D.G., Toberer, E.S., Analytis, J., Dabo, I., DeLongchamp, D.M., Fiete, G.A., Grason, G.M., Hautier, G., Mo, Y., Rajan, K., Reed, E.J., Rodriguez, E., Stevanovic, V., Suntivich, J., Thornton, K., and Zhao, J.-C.: New frontiers for the materials genome initiative. npj Comput. Mater. 5, 41 (2019).
30.Adams, B.L., Kalidindi, S., and Fullwood, D.T.: Microstructure Sensitive Design for Performance Optimization (Butterworth-Heinemann, Oxford, UK, 2012).
31.Huan, T.D., Mannodi-Kanakkithodi, A., Kim, C., Sharma, V., Pilania, G., and Ramprasad, R.: A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).
32.Ziatdinov, M., Jesse, S., Vasudevan, R.K., Sumpter, B.G., Kalinin, S.V., and Dyck, O.: Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning. (2018) arXiv preprint arXiv:1809.04785.
33.Madsen, J., Liu, P., Kling, J., Wagner, J.B., Hansen, T.W., Winther, O., and Schiøtz, J.: A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images. Adv. Theory Simul. 1 (2018).
34.Kang, B. and Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).
35.Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., and Ceder, G.: Interface stability in solid-state batteries. Chem. Mater. 28, 266 (2015).
36.Kirklin, S., Saal, J.E., Hegde, V.I., and Wolverton, C.: High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 102, 125 (2016).
37.Mounet, N., Gibertini, M., Schwaller, P., Campi, D., Merkys, A., Marrazzo, A., Sohier, T., Castelli, I.E., Cepellotti, A., and Pizzi, G.: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).
38.Choudhary, K., Kalish, I., Beams, R., and Tavazza, F.: High-throughput identification and characterization of two-dimensional materials using density functional theory. Sci. Rep. 7, 5179 (2017).
39.Mo, Y., Ong, S.P., and Ceder, G.: Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations. Chem. Mater. 26, 5208 (2014).
40.Beams, R., Cançado, L.G., Krylyuk, S., Kalish, I., Kalanyan, B., Singh, A.K., Choudhary, K., Bruma, A., Vora, P.M., and Tavazza, F.A.N.: Characterization of Few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 10, 9626 (2016).
41.Sholl, D. and Steckel, J.A.: Density Functional Theory: A Practical introduction (John Wiley & Sons, Hoboken, NJ, 2011).
42.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., and Ceder, G.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
43.Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., and Wolverton, C.: The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).
44.Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., and Kozinsky, B.: AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218 (2016).
45.Choudhary, K., Cheon, G., Reed, E., and Tavazza, F.: Elastic properties of bulk and low-dimensional materials using van der Waals density functional. Phys. Rev. B 98, 014107 (2018).
46.Geilhufe, R.M., Olsthoorn, B., Ferella, A., Koski, T., Kahlhoefer, F., Conrad, J., and Balatsky, A.V.: Materials informatics for dark matter detection. (2018) arXiv preprint arXiv:06040.
47.Ramakrishnan, R., Dral, P.O., Rupp, M., and Von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).
48.Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, New York, 2017).
49.Choudhary, K., Biacchi, A.J., Ghosh, S., Hale, L., Walker, A.R.H., and Tavazza, F.: High-throughput assessment of vacancy formation and surface energies of materials using classical force-fields. J. Phys. Condens. Matter 30, 395901 (2018).
50.Choudhary, K., Congo, F.Y.P., Liang, T., Becker, C., Hennig, R.G., and Tavazza, F.: Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface. Sci. Data 4, 160125 (2017).
51.Ogata, S., Lidorikis, E., Shimojo, F., Nakano, A., Vashishta, P., and Kalia, R.K.: Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput. Phys. Commun. 138, 143 (2001).
52.Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., and Walsh, A.: Machine learning for molecular and materials science. Nature 559, 547 (2018).
53.Ward, L., Agrawal, A., Choudhary, A., and Wolverton, C.: A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016).
54.Rupp, M., Tkatchenko, A., Müller, K.-R., and Von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
55.Faber, F., Lindmaa, A., Lilienfeld, O.A.V., and Armiento, R.: Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094 (2015).
56.Schütt, K., Glawe, H., Brockherde, F., Sanna, A., Müller, K., and Gross, E.: How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
57.Ward, L., Liu, R., Krishna, A., Hegde, V.I., Agrawal, A., Choudhary, A., and Wolverton, C.: Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B 96, 024104 (2017).
58.Bartók, A.P., Kondor, R., and Csányi, G.: On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
59.Faber, F.A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S.S., Dahl, G.E., Vinyals, O., Kearnes, S., Riley, P.F., and von Lilienfeld, O.A.: Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 13, 5255 (2017).
60.Choudhary, K., DeCost, B., and Tavazza, F.: Machine learning with force-field inspired descriptors for materials: fast screening and mapping energy landscape. (2018) arXiv preprint arXiv:07325.
61.Isayev, O., Oses, C., Toher, C., Gossett, E., Curtarolo, S., and Tropsha, A.: Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).
62.Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30, 595 (2016).
63.Schütt, K., Kindermans, P.-J., Felix, H.E.S., Chmiela, S., Tkatchenko, A., and Müller, K.-R.: SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. In Advances in Neural Information Processing Systems; 2017; p. 991.
64.Xie, T. and Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).
65.Schütt, K.T., Sauceda, H.E., Kindermans, P.-J., Tkatchenko, A., and Müller, K.-R.: Schnet—a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
66.Chen, C., Ye, W., Zuo, Y., Zheng, C., and Ong, S.P.: Graph networks as a universal machine learning framework for molecules and crystals. (2018) arXiv preprint arXiv:05055.
67.Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., and Dahl, G.E.: Neural message passing for quantum chemistry. (2017) arXiv preprint arXiv:01212.
68.Ward, L., Dunn, A., Faghaninia, A., Zimmermann, N.E., Bajaj, S., Wang, Q., Montoya, J., Chen, J., Bystrom, K., and Dylla, M.: Matminer: an open source toolkit for materials data mining. Comput. Mater. Sci. 152, 60 (2018).
69.De Jong, M., Chen, W., Notestine, R., Persson, K., Ceder, G., Jain, A., Asta, M., and Gamst, A.: A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci. Rep. 6, 34256 (2016).
70.Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., and Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268 (2018).
71.Olsthoorn, B., Geilhufe, R.M., Borysov, S.S., and Balatsky, A.V.: Band gap prediction for large organic crystal structures with machine learning. (2018) arXiv preprint arXiv:12814.
72.Mannodi-Kanakkithodi, A., Pilania, G., Huan, T.D., Lookman, T., and Ramprasad, R.: Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).
73.Collins, C.R., Gordon, G.J., von Lilienfeld, O.A., and Yaron, D.J.: Constant size descriptors for accurate machine learning models of molecular properties. J. Chem. Phys. 148, 241718 (2018).
74.Christensen, A., Faber, F., Huang, B., Bratholm, L., Tkatchenko, A., Müller, K., and von Lilienfeld, O.: QML: A Python Toolkit for Quantum Machine Learning, 2017. https://www.qmlcode.org (accessed July 17, 2019).
75.Khorshidi, A. and Peterson, A.A.: Amp: a modular approach to machine learning in atomistic simulations. Comput. Phys. Commun. 207, 310 (2016).
76.Pun, G., Batra, R., Ramprasad, R., and Mishin, Y.: Physically-informed artificial neural networks for atomistic modeling of materials. (2018) arXiv preprint arXiv:01696.
77.Bartók, A.P. and Csányi, G.: Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115, 1051 (2015).
78.Huan, T.D., Batra, R., Chapman, J., Krishnan, S., Chen, L., and Ramprasad, R.: A universal strategy for the creation of machine learning-based atomistic force fields. npj Comput. Mater. 3, 37 (2017).
79.Thompson, A.P., Swiler, L.P., Trott, C.R., Foiles, S.M., and Tucker, G.J.: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316 (2015).
80.Kolb, B., Lentz, L.C., and Kolpak, A.M.: Discovering charge density functionals and structure-property relationships with PROPhet: a general framework for coupling machine learning and first-principles methods. Sci. Rep. 7, 1192 (2017).
81.Yao, K., Herr, J.E., Toth, D.W., Mckintyre, R., and Parkhill, J.: The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics. Chem. Sci. 9, 2261 (2018).
82.Smith, J.S., Isayev, O., and Roitberg, A.E.: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192 (2017).
83.Artrith, N., Urban, A., and Ceder, G.: Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys. Rev. B 96, 014112 (2017).
84.Wang, H., Zhang, L., Han, J., and Weinan, E.: DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178 (2018).
85.Chmiela, S., Tkatchenko, A., Sauceda, H.E., Poltavsky, I., Schütt, K.T., and Müller, K.-R.: Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).
86.Mardt, A., Pasquali, L., Wu, H., and Noé, F.: VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9, 5 (2018).
87.Xue, D., Balachandran, P.V., Hogden, J., Theiler, J., Xue, D., and Lookman, T.: Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).
88.Gunning, David and Aha, David: DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Magazine 40, 44 (2019).
89.Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J.K., Ceulemans, H., Clevert, D.-A., and Hochreiter, S.: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5541 (2018).
90.Curtarolo, S., Morgan, D., Persson, K., Rodgers, J., and Ceder, G.: Predicting crystal structures with data mining of quantum calculations. Phys. Rev. Lett. 91, 135503 (2003).
91.Pilania, G., Balachandran, P.V., Kim, C., and Lookman, T.: Finding new perovskite halides via machine learning. Front. Mater. 3, 19 (2016).
92.Oliynyk, A.O., Antono, E., Sparks, T.D., Ghadbeigi, L., Gaultois, M.W., Meredig, B., and Mar, A.: High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem. Mater. 28, 7324 (2016).
93.Hautier, G., Fischer, C.C., Jain, A., Mueller, T., and Ceder, G.: Finding nature's missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762 (2010).
94.Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J.C., and Viswanathan, V.: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent. Sci. 4, 996 (2018).
95.Pyzer-Knapp, E.O., Li, K., and Aspuru-Guzik, A.: Learning from the Harvard clean energy project: the use of neural networks to accelerate materials discovery. Adv. Funct. Mater. 25, 6495 (2015).
96.Stanev, V., Oses, C., Kusne, A.G., Rodriguez, E., Paglione, J., Curtarolo, S., and Takeuchi, I.: Machine learning modeling of superconducting critical temperature. npj Comput. Mater. 4, 29 (2018).
97.Botu, V., Batra, R., Chapman, J., and Ramprasad, R.: Machine learning force fields: construction, validation, and outlook. J. Phys. Chem. C 121, 511 (2016).
98.Kalinin, S.V., Rodriguez, B.J., Budai, J.D., Jesse, S., Morozovska, A., Bokov, A.A., and Ye, Z.-G.: Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B 81, 064107 (2010).
99.Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., and Foster, I.: The materials data facility: data services to advance materials science research. JOM 68, 2045 (2016).
100.Sheppard, D.: Robert Le Rossignol, 1884–1976: engineer of the ‘Haber’ process. Notes Rec. R. Soc. 71, 263 (2017).
101.Hanak, J.J.: The ‘multiple-sample concept’ in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964 (1970).
102.Xiang, X.-D., Sun, X., Briceno, G., Lou, Y., Wang, K.-A., Chang, H., Wallace-Freedman, W.G., Chen, S.-W., and Schultz, P.G.: A combinatorial approach to materials discovery. Science 268, 1738 (1995).
103.Barber, Z. and Blamire, M.: High throughput thin film materials science. Mater. Sci. Technol. 24, 757 (2008).
104.Green, M.L., Choi, C., Hattrick-Simpers, J., Joshi, A., Takeuchi, I., Barron, S., Campo, E., Chiang, T., Empedocles, S., and Gregoire, J.: Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105 (2017).
105.Maier, W.F., Stoewe, K., and Sieg, S.: Combinatorial and high-throughput materials science. Angew. Chem. 46, 6016 (2007).
106.Green, M.L., Takeuchi, I., and Hattrick-Simpers, J.R.: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).
107.Dubois, J.-L., Duquenne, C., Holderich, W., and Kervennal, J.: Process for Dehydrating Glycerol to Acrolein (Google Patents, 2010).
108.Arriola, D.J., Carnahan, E.M., Hustad, P.D., Kuhlman, R.L., and Wenzel, T.T.: Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312, 714 (2006).
109.Meguro, S., Ohnishi, T., Lippmaa, M., and Koinuma, H.: Elements of informatics for combinatorial solid-state materials science. Meas. Sci. Technol. 16, 309 (2004).
110.Takeuchi, I., Lippmaa, M., and Matsumoto, Y.: Combinatorial experimentation and materials informatics. MRS Bull. 31, 999 (2006).
111.Koinuma, H.: Combinatorial materials research projects in Japan. Appl. Surf. Sci. 189, 179 (2002).
112.Smotkin, E.S. and Diaz-Morales, R.R.: New electrocatalysts by combinatorial methods. Ann. Rev. Mater. Res. 33, 557 (2003).
113.Watanabe, Y., Umegaki, T., Hashimoto, M., Omata, K., and Yamada, M.: Optimization of Cu oxide catalysts for methanol synthesis by combinatorial tools using 96 well microplates, artificial neural network and genetic algorithm. Catal. Today 89, 455 (2004).
114.Dell'Anna, R., Lazzeri, P., Canteri, R., Long, C.J., Hattrick-Simpers, J., Takeuchi, I., and Anderle, M.: Data analysis in combinatorial experiments: applying supervised principal component technique to investigate the relationship between ToF-SIMS Spectra and the composition distribution of ternary metallic alloy thin films. QSAR Comb. Sci. 27, 171 (2008).
115.Takeuchi, I., Long, C., Famodu, O., Murakami, M., Hattrick-Simpers, J., Rubloff, G., Stukowski, M., and Rajan, K.: Data management and visualization of x-ray diffraction spectra from thin film ternary composition spreads. Rev. Sci. Instrum. 76, 062223 (2005).
116.Yomada, Y. and Kobayashi, T.: Utilization of combinatorial method and high throughput experimentation for development of heterogeneous catalysts. J. Jpn. Petrol Inst. 49, 157 (2006).
117.Rodemerck, U., Baerns, M., Holena, M., and Wolf, D.: Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Appl. Surf. Sci. 223, 168 (2004).
118.Long, C., Hattrick-Simpers, J., Murakami, M., Srivastava, R., Takeuchi, I., Karen, V.L., and Li, X.: Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78, 072217 (2007).
119.Gregoire, J.M., Dale, D., and Van Dover, R.B.: A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Rev. Sci. Instrum. 82, 015105 (2011).
120.Long, C., Bunker, D., Li, X., Karen, V., and Takeuchi, I.: Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 80, 103902 (2009).
121.LeBras, R., Damoulas, T., Gregoire, J.M., Sabharwal, A., Gomes, C.P., and Van Dover, R.B.: Constraint reasoning and kernel clustering for pattern decomposition with scaling. In International Conference on Principles and Practice of Constraint Programming, Perugia, Italy (Springer, 2011), pp. 508.
122.Bunn, J.K., Han, S., Zhang, Y., Tong, Y., Hu, J., and Hattrick-Simpers, J.R.: Generalized machine learning technique for automatic phase attribution in time variant high-throughput experimental studies. J. Mater. Res. 30, 879 (2015).
123.Bunn, J.K., Hu, J., and Hattrick-Simpers, J.R.: Semi-supervised approach to phase identification from combinatorial sample diffraction patterns. JOM 68, 2116 (2016).
124.Hattrick-Simpers, J.R., Gregoire, J.M., and Kusne, A.G.: Perspective: composition–structure–property mapping in high-throughput experiments: turning data into knowledge. APL Mater. 4, 053211 (2016).
125.Kusne, A.G., Keller, D., Anderson, A., Zaban, A., and Takeuchi, I.: High-throughput determination of structural phase diagram and constituent phases using GRENDEL. Nanotechnology 26, 444002 (2015).
126.Suram, S.K., Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Zhou, L., van Dover, R.B., and Gomes, C.P.: Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb. Sci. 19, 37 (2016).
127.Kusne, A.G., Gao, T., Mehta, A., Ke, L., Nguyen, M.C., Ho, K.-M., Antropov, V., Wang, C.-Z., Kramer, M.J., Long, C., and Takeuchi, I.: On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).
128.Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., and Zhang, Z.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).
129.Zakutayev, A., Stevanovic, V., and Lany, S.: Non-equilibrium alloying controls optoelectronic properties in Cu2O thin films for photovoltaic absorber applications. Appl. Phys. Lett. 106, 123903 (2015).
130.Yan, Q., Yu, J., Suram, S.K., Zhou, L., Shinde, A., Newhouse, P.F., Chen, W., Li, G., Persson, K.A., and Gregoire, J.M.: Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl. Acad. Sci. USA 114, 3040 (2017).
131.Hattrick-Simpers, J.R., Choudhary, K., and Corgnale, C.: A simple constrained machine learning model for predicting high-pressure-hydrogen-compressor materials. Mol. Sys. Des. Eng 3, 509 (2018).
132.Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J., and Mehta, A.: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).
133.Yuan, R., Liu, Z., Balachandran, P.V., Xue, D., Zhou, Y., Ding, X., Sun, J., Xue, D., and Lookman, T.: Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv. Mater. 30, 1702884 (2018).
134.Bassman, L., Rajak, P., Kalia, R.K., Nakano, A., Sha, F., Sun, J., Singh, D.J., Aykol, M., Huck, P., and Persson, K.: Active learning for accelerated design of layered materials. npj Comput. Mater. 4, 74 (2018).
135.Podryabinkin, E.V., Tikhonov, E.V., Shapeev, A.V., and Oganov, A.R.: Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).
136.Talapatra, A., Boluki, S., Duong, T., Qian, X., Dougherty, E., and Arróyave, R.: Autonomous efficient experiment design for materials discovery with Bayesian model averaging. Phys. Rev. Mater. 2, 113803 (2018).
137.Lookman, T., Balachandran, P.V., Xue, D., and Yuan, R.: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5, 21 (2019).
138.Meredig, B., Antono, E., Church, C., Hutchinson, M., Ling, J., Paradiso, S., Blaiszik, B., Foster, I., Gibbons, B., and Hattrick-Simpers, J.: Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Mol. Syst. Des. Eng. 3, 819 (2018).
139.King, R.D., Rowland, J., Aubrey, W., Liakata, M., Markham, M., Soldatova, L.N., Whelan, K.E., Clare, A., Young, M., and Sparkes, A.: The robot scientist Adam. Computer 42, 46 (2009).
140.Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R., and Maruyama, B.: Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016).
141.Roch, L.M., Häse, F., Kreisbeck, C., Tamayo-Mendoza, T., Yunker, L.P., Hein, J.E., and Aspuru-Guzik, A.: ChemOS: orchestrating autonomous experimentation. Sci. Robot. 3, eaat5559 (2018).
142.DeCost, B. and Kusne, G.: Deep Transfer Learning for Active Optimization of Functional Materials Properties in the Data-Limited Regime (MRS Fall, Boston, MA, 2018).
143.Kusne, G., DeCost, B., Hattrick-Simpers, J., and Takeuchi, I.: Autonomous Materials Research Systems—Phase Mapping (MRS Fall, Boston, MA, 2018).
144.Caramelli, D., Salley, D., Henson, A., Camarasa, G.A., Sharabi, S., Keenan, G., and Cronin, L.: Networking chemical robots for reaction multitasking. Nat. Commun 9, 3406 (2018).
145.Klucznik, T., Mikulak-Klucznik, B., McCormack, M.P., Lima, H., Szymkuć, S., Bhowmick, M., Molga, K., Zhou, Y., Rickershauser, L., and Gajewska, E.P.: Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522 (2018).
147.Ziatdinov, M., Dyck, O., Maksov, A., Li, X., Sang, X., Xiao, K., Unocic, R.R., Vasudevan, R., Jesse, S., and Kalinin, S.V.: Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano 11, 12742 (2017).
148.Ziatdinov, M., Maksov, A., and Kalinin, S.V.: Learning surface molecular structures via machine vision. npj Comput. Mater. 3, 31 (2017).
149.Barthel, J.: Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1 (2018).
150.Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA (2015), pp. 3431.
151.Ziatdinov, M., Dyck, O., Sumpter, B.G., Jesse, S., Vasudevan, R.K., and Kalinin, S.V.: Building and exploring libraries of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study. (2018) arXiv preprint arXiv:1809.04256.
152.Maksov, A., Dyck, O., Wang, K., Xiao, K., Geohegan, D.B., Sumpter, B.G., Vasudevan, R.K., Jesse, S., Kalinin, S.V., and Ziatdinov, M.: Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. npj Comput. Mater. 5, 12 (2019).
153.Ziatdinov, M., Dyck, O., Jesse, S., and Kalinin, S.V.. Atomic mechanisms for the Si atom dynamics in graphene: chemical transformations at the edge and in the bulk. (2019) arXiv preprint arXiv:1901.09322.
154.Yablon, D.G., Gannepalli, A., Proksch, R., Killgore, J., Hurley, D.C., Grabowski, J., and Tsou, A.H.: Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy. Macromolecules 45, 4363 (2012).
155.Schlücker, S., Schaeberle, M.D., Huffman, S.W., and Levin, I.W.: Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem. 75, 4312 (2003).
156.Ievlev, A.V., Maksymovych, P., Trassin, M., Seidel, J., Ramesh, R., Kalinin, S.V., and Ovchinnikova, O.S.: Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching. ACS Appl. Mater. Interfaces 8, 29588 (2016).
157.Hruszkewycz, S., Folkman, C., Highland, M., Holt, M., Baek, S., Streiffer, S., Baldo, P., Eom, C., and Fuoss, P.: X-ray nanodiffraction of tilted domains in a poled epitaxial BiFeO3 thin film. Appl. Phys. Lett. 99, 232903 (2011).
158.Cai, Z., Lai, B., Xiao, Y., and Xu, S.: An X-ray diffraction microscope at the Advanced Photon Source. In Journal de Physique IV (Proceedings); EDP Sciences, 2003; p. 17.
159.Kalinin, S.V., Karapetian, E., and Kachanov, M.: Nanoelectromechanics of piezoresponse force microscopy. Phys. Rev. B 70, 184101 (2004).
160.Eliseev, E.A., Kalinin, S.V., Jesse, S., Bravina, S.L., and Morozovska, A.N.: Electromechanical detection in scanning probe microscopy: tip models and materials contrast. J. Appl. Phys. 102, 014109 (2007).
161.Monig, H., Todorovic, M., Baykara, M.Z., Schwendemann, T.C., Rodrigo, L., Altman, E.I., Perez, R., and Schwarz, U.D.: Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7, 10233 (2013).
162.Ievlev, A.V., Susner, M.A., McGuire, M.A., Maksymovych, P., and Kalinin, S.V.: Quantitative analysis of the local phase transitions induced by laser heating. ACS Nano 9, 12442 (2015).
163.Dönges, S.A., Khatib, O., O'Callahan, B.T., Atkin, J.M., Park, J.H., Cobden, D., and Raschke, M.B.: Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO2. Nano Lett. 16, 3029 (2016).
164.Kim, Y., Strelcov, E., Hwang, I.R., Choi, T., Park, B.H., Jesse, S., and Kalinin, S.V.: Correlative multimodal probing of ionically-mediated electromechanical phenomena in simple oxides. Sci. Rep. 3, 2924 (2013).
165.Ovchinnikov, O., Jesse, S., Bintacchit, P., Trolier-McKinstry, S., and Kalinin, S.V.: Disorder identification in hysteresis data: recognition analysis of the random-bond–random-field ising model. Phys. Rev. Lett. 103, 157203 (2009).
166.Borodinov, N., Neumayer, S., Kalinin, S.V., Ovchinnikova, O.S., Vasudevan, R.K., and Jesse, S.: Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy. npj Comput. Mater. 5, 25 (2019).
167.Pradhan, D.K., Kumari, S., Strelcov, E., Pradhan, D.K., Katiyar, R.S., Kalinin, S.V., Laanait, N., and Vasudevan, R.K.: Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence. npj Comput. Mater. 4, 1 (2018).
168.Li, L., Yang, Y., Zhang, D., Ye, Z.-G., Jesse, S., Kalinin, S.V., and Vasudevan, R.K.: Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors. Sci. Adv 4, 8672 (2018).
169.Shah, V.P., Younan, N.H., and King, R.L.: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens. 46, 1323 (2008).
170.Somnath, S., Belianinov, A., Kalinin, S.V., and Jesse, S.: Full information acquisition in piezoresponse force microscopy. Appl. Phys. Lett 107, 263102 (2015).
171.Somnath, S., Law, K.J., Morozovska, A., Maksymovych, P., Kim, Y., Lu, X., Alexe, M., Archibald, R., Kalinin, S.V., and Jesse, S.: Ultrafast current imaging by Bayesian inversion. Nat. Commun. 9, 513 (2018).
172.Somnath, S., Belianinov, A., Kalinin, S.V., and Jesse, S.: Rapid mapping of polarization switching through complete information acquisition. Nat. Commun. 7, 13290 (2016).
173.Collins, L., Belianinov, A., Somnath, S., Balke, N., Kalinin, S.V., and Jesse, S.: Full data acquisition in kelvin probe force microscopy: mapping dynamic electric phenomena in real space. Sci. Rep. 6, 30557 (2016).
174.Balke, N., Jesse, S., Yu, P., Carmichael, B., Kalinin, S.V., and Tselev, A.: Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology 27, 425707 (2016).
175.Labuda, A. and Proksch, R.: Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope. Appl. Phys. Lett. 106, 253103 (2015).
176.Kalidindi, S.R. and De Graef, M.: Materials data science: current status and future outlook. Ann. Rev. Mater. Res. 45, 171 (2015).
177.Fullwood, D.T., Niezgoda, S.R., and Kalidindi, S.R.: Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56, 942 (2008).
178.Kalidindi, S.R., Niezgoda, S.R., and Salem, A.A.: Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63, 34 (2011).
179.Sharma, V., Wang, C., Lorenzini, R.G., Ma, R., Zhu, Q., Sinkovits, D.W., Pilania, G., Oganov, A.R., Kumar, S., Sotzing, G.A., Boggs, S.A., and Ramprasad, R.: Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).
180.Gopakumar, A.M., Balachandran, P.V., Xue, D., Gubernatis, J.E., and Lookman, T.: Multi-objective optimization for materials discovery via adaptive design. Sci. Rep. 8, 3738 (2018).
181.Hutchinson, M.L., Antono, E., Gibbons, B.M., Paradiso, S., Ling, J., and Meredig, B.: Overcoming data scarcity with transfer learning. (2017) arXiv preprint arXiv:1711.05099.
182.Oviedo, F., Ren, Z., Sun, S., Settens, C., Liu, Z., Hartono, N.T.P., Ramasamy, S., DeCost, B.L., Tian, S.I.P., Romano, G., Gilad Kusne, A., and Buonassisi, T.: Fast and interpretable classification of small x-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 5, 60 (2019).
183.Vlcek, L., Ziatdinov, M., Maksov, A., Tselev, A., Baddorf, A.P., Kalinin, S.V., and Vasudevan, R.K.: Learning from imperfections: predicting structure and thermodynamics from atomic imaging of fluctuations. ACS Nano 13, 718 (2019).
184.Vlcek, L., Vasudevan, R.K., Jesse, S., and Kalinin, S.V.: Consistent integration of experimental and ab initio data into effective physical models. J. Chem. Theory Comput. 13, 5179 (2017).
185.Vlcek, L., Maksov, A., Pan, M., Vasudevan, R.K., and Kalinin, S.V.: Knowledge extraction from atomically resolved images. ACS Nano 11, 10313 (2017).
186.Belianinov, A., He, Q., Kravchenko, M., Jesse, S., Borisevich, A., and Kalinin, S.V.: Identification of phases, symmetries and defects through local crystallography. Nat. Commun 6, 7801 (2015).
187.Ross, D., Strychalski, E.A., Jarzynski, C., and Stavis, S.M.: Equilibrium free energies from non-equilibrium trajectories with relaxation fluctuation spectroscopy. Nat. Phys 14, 842 (2018).
188.Kutnjak, Z., Petzelt, J., and Blinc, R.: The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006).
189.Somnath, S., Smith, C.R., Laanait, N., Vasudevan, R.K., Ievlev, A., Belianinov, A., Lupini, A.R., Shankar, M., Kalinin, S.V., and Jesse, S.: USID and pycroscopy—open frameworks for storing and analyzing spectroscopic and imaging data. (2019) arXiv preprint arXiv:1903.09515.
190.Hall, S.R., Allen, F.H., and Brown, I.D.: The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr. A 47, 655 (1991).
191.Pearl, J.: Theoretical impediments to machine learning with seven sparks from the causal revolution. (2018) arXiv preprint arXiv:1801.04016.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed