Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T07:53:30.141Z Has data issue: false hasContentIssue false

Low-loss silicon wire waveguides for optical integrated circuits

Published online by Cambridge University Press:  06 January 2016

Tsuyoshi Horikawa*
Affiliation:
Photonics Electronics Technology Research Association (PETRA), 16-1 Onogawa, Tsukuba 305-8569, Japan National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
Daisuke Shimura
Affiliation:
Photonics Electronics Technology Research Association (PETRA), 16-1 Onogawa, Tsukuba 305-8569, Japan
Tohru Mogami
Affiliation:
Photonics Electronics Technology Research Association (PETRA), 16-1 Onogawa, Tsukuba 305-8569, Japan
*
* Address all correspondence to Tsuyoshi Horikawa attsuyoshi.horikawa@aist.go.jp
Get access

Abstract

Low-propagation-loss silicon wire waveguides are key components of optical integrated circuits. In this paper, we clarified, through assessment of the relationship between waveguide loss and fabrication technology that high-resolution lithography and an adjusted lithography process window are important for low-loss waveguides. The silicon wire waveguides fabricated by high-resolution lithography technology using ArF immersion lithography process showed world-record low propagation losses of 0.40 dB/cm for the C-band and 1.28 dB/cm for the O-band. Analysis with Barwicz and Haus's theory indicated that sidewall scattering is the main cause of propagation loss even in such low-loss waveguides.

Type
Plasmonics, Photonics, and Metamaterials Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vlasov, Y.A.: Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun. Mag. 50, s67 (2012).CrossRefGoogle Scholar
2. Zuffada, M.: The industrialization of the Silicon Photonics: Technology roadmap and application (Proc. European Solid-State Device Res. Conf., Milan, Italy, 2012) p. 7.CrossRefGoogle Scholar
3. Arakawa, Y., Nakamura, T., Urino, Y., and Fujita, T.: Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72 (2013).Google Scholar
4. Boeuf, F., Cremer, S., Vulliet, N., Pinguet, T., Mekis, A., Masini, G., Verslegers, L., Sun, P., Ayazi, A., Hon, N.-K., Sahni, S., Chi, Y., Orlando, B., Ristoiu, D., Farcy, A., Leverd, F., Broussous, L., Pelissier-Tanon, D., Richard, C., Pinzelli, L., Beneyton, R., Gourhant, O., Gourvest, E., Le-Friec, Y., Monnier, D., Brun, P., Guillermet, M., Benoit, D., Haxaire, K., Manouvrier, J.R., Jan, S., Petiton, H., Carpentier, J.F., Quemerais, T., Durand, C., Gloria, D., Fourel, M., Battegay, F., Sanchez, Y., Batail, E., Baron, F., Delpech, P., Salager, L., De Dobbelaere, P., and Sautreuil, B.: A multi-wavelength 3D-compatible silicon photonics platform on 300 mm SOI wafers for 25Gb/s applications (IEEE Int. Electron Devices Meet., Washington, DC, USA, 2013) p. 353.CrossRefGoogle Scholar
5. Urino, Y., Hatori, N., Mizutani, K., Usuki, T., Fujikata, J., Yamada, K., Horikawa, T., Nakamura, T., and Arakawa, Y.: First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C. J. Lightwave Technol. 33, 1223 (2014).CrossRefGoogle Scholar
6. Vlasov, Y.A. and McNab, S.J.: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622 (2004).CrossRefGoogle ScholarPubMed
7. Orobtchouk, R., Schell, N., Benyattou, T., and Fedeli, J.M.: Compact building block for optical link on SOI technology (European Conf. Integrated Opt., Grenoble, France, 2005).Google Scholar
8. Sparacin, D.K., Spector, S.J., and Kimerling, L.C.: silicon waveguide sidewall smoothing by wet chemical oxidation. J. Lightwave Technol. 23, 2455 (2005).CrossRefGoogle Scholar
9. Bogaerts, W., Baets, R., Dumon, P., Wiaux, V., Beckx, S., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P., and Van Thourhout, D.: Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401 (2005).Google Scholar
10. Tsuchizawa, T., Yamada, Y., Fukuda, H., Watanabe, T., Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., and Morita, H.: Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).CrossRefGoogle Scholar
11. Xia, F., Sekaric, L., and Vlasov, Y.: Ultracompact optical buffers on a silicon chip. Nat. Photonics 1, 65 (2007).CrossRefGoogle Scholar
12. Gnan, M., Thoms, S., Macintyre, D.S., De La Rue, R.M., and Sorel, M.: Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115 (2008).CrossRefGoogle Scholar
13. Tsuchizawa, T., Yamada, K., Watanabe, T., Fukuda, H., Nishi, H., Shinojima, H., and Itabashi, S.: Si photonics platform and its fabrication (Int. Symp. on Adv. Sci. Technol. Silicon Mat., Hawaii, USA, 2008).Google Scholar
14. Bogaerts, W., Selvaraja, S.K., Dumon, P., Brouckaert, J., De Vos, K., Van Thourhout, D., and Baerts, R.: Silicon-on–insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).CrossRefGoogle Scholar
15. Selvaraja, S.K., Murdoch, G., Milein, A., Delvaux, C., Ong, P., Pathak, S., Vermeulen, D., Sterckx, G., Winroth, G., Verheyen, P., Lepage, G., Bogaerts, W., Baerts, R., Van Campenhout, J., and Absil, P.: Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors (Opto-Electron. Commun. Conf., Busan, Korea, 2012) p. 15.Google Scholar
16. Hirayama, N., Takahashi, H., Noguchi, Y., Yamagishi, M., and Horikawa, T.: Low-loss Si waveguides with variable-shaped-beam EB lithography for large-scaled photonic circuits (Int. Conf. on Solid State Devices Mat., Kyoto, Japan, 2012) p. 530.CrossRefGoogle Scholar
17. Horikawa, T., Takahashi, H., Seki, M., and Nakamura, T.: Silicon photonic integration by using variable-shaped-beam EB lithography and immersion ArF lithography (Int. Symp. on Photonics Electron. Convergence, Tokyo, Japan, 2012) p. 12.Google Scholar
18. Takahashi, H., Toyama, M., Seki, M., Shimura, D., Koshino, K., Yokoyama, N., Ohtsuka, M., Sugiyama, A., Ishitsuka, E., Sano, T., and Horikawa, T.: The impacts of ArF excimer immersion lithography on integrated silicon photonics technology (Int. Conf. on Solid State Devices Mat., Kyoto, Japan, 2012) p. 528.CrossRefGoogle Scholar
19. Selvaraja, S.K., De Heyn, P., Winroth, G., Ong, P., Lepage, G., Cailler, C., Rigny, A., Bourdelle, K.K., Bogaerts, W., Van Thourhout, D., Van Campenhout, J., and Absil, P.: Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform (OFC 2014, San Francisco, USA, 2014), Th2A.33.CrossRefGoogle Scholar
20. Shimura, D., Horikawa, T., Okayama, H., Jeong, S.-H., Tokushima, M., Sasaki, H., and Mogami, T.: High precision Si waveguide devices designed for. 1.31 µm and 1.55 µm wavelengths on 300 mm-SOI (IEEE Int. Conf. on Group IV Photonics, Paris, France, 2014) p. 31.CrossRefGoogle Scholar
21. Lardenois, S., Pascal, D., Vivien, L., Cassan, E., Laval, S., Orobtchouk, R., Helzmann, M., Bouzzalda, N., and Mollard, L.: Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Opt. Lett. 28, 1150 (2003).CrossRefGoogle ScholarPubMed
22. Payne, F.P. and Lacey, J.P.R.: A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum Electron. 26, 977 (1994).CrossRefGoogle Scholar
23. Barwicz, T. and Haus, H.A.: Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J. Lightwave Technol. 23, 2719 (2005).CrossRefGoogle Scholar
24. Novack, A., Streshisky, M., Ding, R., Liu, Y., Lim, A.E.-J., Lo, G.-Q., Baehr-Jones, T., and Hockberg, M.: Progress in silicon platforms for integrated optics. Nanophotonics 3, 205 (2014).CrossRefGoogle Scholar
25. Horikawa, T. and Mogami, T.: Ultra-fine Si photonics fabrication technology based on 40-nm-node CMOS process (IEEE Int. Conf. on Group IV Photonics, Vancouver, Canada, 2015) p. 201.CrossRefGoogle Scholar
26. Horikawa, T., Seki, M., Toyama, M., Koshino, K., Yokoyama, N., Ohtsuka, M., Sugiyama, A., Ishitsuka, E., Yamagishi, M., and Sano, T.: SOI waveguide process(VI) – Waveguide pattern formed by ArF immersion lithography(II) – (IEICE Electron. Conf., Toyama, Japan, 2012) p. 174 [in Japanese].Google Scholar
27. Horikawa, T., Shimura, D., Jeong, S.-H., Tokushima, M., Kinoshita, K., and Mogami, T.: The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides. Microelectron. Eng. in press doi: 10.1016/j.mee.2015.11.015.Google Scholar
28. Barwicz, T. and Smith, H.I.: Evolution of line edge roughness during fabrication of high-index-contrast microphotonic devices. J. Vac. Sci. Technol. B 21, 2892 (2003).CrossRefGoogle Scholar
29. Barwicz, T., Holzwarth, C.W., Rakich, P.T., Popovic, M.A., Ippen, E.P., and Smith, H.I.: Optical loss in silicon microphotonic waveguides induces by metallic contamination. Appl. Phys. Lett. 92, 131108 (2008).CrossRefGoogle Scholar
30. Kinoshita, K., Horikawa, T., Shimura, D., Takahashi, H., and Mogami, T.: Study of O3-TEOS SiO2 Cladding for Silicon Photonics Devices (GEC/ICRP/SPP, Honolulu, USA, 2015), NR2.00002.Google Scholar
31. Sparacin, D.K.: Process and design techniques for low loss integrated silicon photonics. PhD thesis, MIT, 2006, pp. 84106.Google Scholar