Skip to main content Accessibility help
×
Home

Local-structure-affected behavior during self-driven grain boundary migration

  • X. M. Luo (a1), B. Zhang (a2), X. F. Zhu (a1), Y. T. Zhou (a1), T. Y. Xiao (a2) and G. P. Zhang (a1)...

Abstract

In nanocrystalline (nc) metals, it is still not clear how local grain boundary (GB) structures accommodate GB migration at atomic scales and what dominates the motion of atoms at the inherently unstable GB front. Here, we report the adjustment of the local GB structures at atomic scales during self-driven GB migration, simultaneously involving GB dissociation, partial dislocation emission from GB, and faceting/defaceting in the nc Cu. Furthermore, we reveal that the fundamental of GB migration ability is closely related to the local structure, i.e. the GB segment consisting of “hybrid” structural units and delocalized GB dislocations is relatively unstable.

Copyright

Corresponding author

Address all correspondence to G. P. Zhang at gpzhang@imr.ac.cn

References

Hide All
1. Schiotz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003).
2. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2003).
3. McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P. and Mukherjee, A.K.: Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684 (1999).
4. Luo, X.M., Zhu, X.F. and Zhang, G.P.: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).
5. Rupert, T.J., Gianola, D.S., Gan, Y. and Hemker, K.J.: Experimental observations of stress-driven grain boundary migration. Science 326, 1686 (2009).
6. Zhu, Y.T., Liao, X.Z. and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).
7. Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A. and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).
8. Yamakov, V., Wolf, D., Phillpot, S.R. and Gleiter, H.: Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 50, 5005 (2002).
9. Wu, X.L. and Ma, E.: Deformation twinning mechanisms in nanocrystalline Ni. Appl. Phys. Lett. 88, 061905 (2006).
10. Van Swygenhoven, H., Derlet, P. and Hasnaoui, A.: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).
11. Derlet, P.M., Van Swygenhoven, H. and Hasnaoui, A.: Atomistic simulation of dislocation emission in nanosized grain boundaries. Phil. Mag. 83, 3569 (2003).
12. Murr, L.E.: Strain-induced dislocation emission from grain boundaries in stainless steel. Mater. Sci. Eng. 51, 71 (1981).
13. Straumal, B.B., Polyakov, S.A. and Mittemeijer, E.J.: Temperature influence on the faceting of Σ3 and Σ9 grain boundaries in Cu. Acta Mater. 54, 167 (2006).
14. Merkle, K.L., Thompson, L.J. and Phillipp, F.: Collective effects in grain boundary migration. Phys. Rev. Lett. 88, 225501 (2002).
15. Merkle, K.L. and Thompson, L.J.: Atomic-scale observation of grain boundary motion. Mater. Lett. 48, 188 (2001).
16. Merkle, K.L., Thompson, L.J. and Phillipp, F.: In-situ HREM studies of grain boundary migration. Interface Sci. 12, 277 (2004).
17. Liu, L., Wang, J., Gong, S. and Mao, S.: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106, 175504 (2011).
18. Gottstein, G. and Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed. (CRC Press, Boca Raton, 2010).
19. Koch, C.T.. Determination of core structure periodicity and point defect density along dislocations. Ph.D. Dissertation, Arizona State University, Tempe, AZ, 2002.
20. Brandon, D.G.: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).
21. Medlin, D.L., Carter, C.B., Angelo, J.E. and Mills, M.J.: Climb and glide of a/3〈111〉 dislocations in an aluminium Σ = 3 boundary. Phil. Mag. A 75, 733 (1997).
22. Merkle, K.L. and Wolf, D.: Low-energy configurations of symmetric and asymmetric tilt grain boundaries. Phil. Mag. A 65, 513 (1992).
23. Rittner, J.D. and Seidman, D.N.: 〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys. Rev. B 54, 6999 (1996).
24. Tschopp, M.A., Tucker, G.J. and McDowell, D.L.: Structure and free volume of 〈110〉 symmetric tilt grain boundaries with the E structural unit. Acta Mater. 55, 3959 (2007).
25. Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z. and Langdon, T.G.: An investigation of grain boundaries in submicrometer-grained Al–Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996).
26. Mompiou, F., Legros, M., Radetic, T., Dahmen, U., Gianola, D.S. and Hemker, K.J.: In situ TEM observation of grain annihilation in tricrystalline aluminum films. Acta Mater. 60, 2209 (2012).
27. Egerton, R.F., Li, P. and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).
28. Krasheninnikov, A.V. and Banhart, F.: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6, 723 (2007).
29. Gleiter, H.: The structure and properties of high-angle grain boundaries in metals. Phys. Status Solidi b 45, 9 (1971).
30. Sutton, A.P. and Vitek, V.: On the structure of tilt boundary boundaries in cubic metals I. symmetrical tilt boundaries. Phil. Trans. R. Soc. A 309, 1 (1983).
31. Zhang, H. and Srolovitz, D.J.: Simulation and analysis of the migration mechanism of Σ5 tilt grain boundaries in an fcc metal. Acta Mater. 54, 623 (2006).
32. Gutkin, M.Y., Ovid'ko, I.A. and Skiba, N.V.: Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials. J. Phys. D., Appl. Phys. 38, 3921 (2005).
33. Van Swygenhoven, H. and Derlet, P.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).
34. Spearot, D.E., Jacob, K.I. and McDowell, D.L.: Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plasticity 23, 143 (2007).
35. Derlet, P.M., Hasnaoui, A. and Van Swygenhoven, H.: Atomistic simulations as guidance to experiments. Scr. Mater. 49, 629 (2003).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed