Skip to main content Accessibility help
×
Home

Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN

  • Leah Y. Kuritzky (a1) and James S. Speck (a1)

Abstract

More than two decades of III-N materials research has led to the production of visible spectrum commercial light-emitting diodes (LEDs) and laser diodes (LDs). Commercial c-plane LEDs are currently limited by efficiency droop which describes the decline in efficiency with increasing input current density. Laser-based sources, however, provide peak efficiencies at much higher current densities and may circumvent efficiency droop limitations. The potential benefits of non-basal plane (NBP) orientations could accelerate the evolution of solid-state lighting from LED to LD sources. Here, we review the progress in long-wavelength (440–590 nm) NBP quantum well LD research and discuss applications in solid-state lighting, visible light communication and smart lighting.

Copyright

Corresponding author

Address all correspondence to Leah Y. Kuritzky atlkuritzky@umail.ucsb.edu

References

Hide All
1.Nakamura, S.: Background story of the invention of efficient blue InGaN light emitting diodes. Nobel Lecture (2014). Available at http://www.nobelprize.org/mediaplayer/index.php?id=2423
2.Nakamura, S., Mukai, T., and Senoh, M.: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett 64, 16871689 (1994).
3.Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S.-I.: High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structures. Jpn. J. Appl. Phys. 34, L797L799 (1995).
4.Lang, J.R., Neufeld, C.J., Hurni, C.A., Cruz, S.C., Matioli, E., Mishra, U.K., and Speck, J.S.: High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy. Appl. Phys. Lett. 98, 131115 (2011).
5.Matioli, E., Neufeld, C., Iza, M., Cruz, S.C., Al-Heji, A.a, Chen, X., Farrell, R.M., Keller, S., DenBaars, S., Mishra, U., Nakamura, S., Speck, J., and Weisbuch, C.: High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 98, 021102 (2011).
6.Mishra, U.: Redefining energy efficiency. Presentation for the Institute for Energy Efficiency, UCSB (2014). Available at http://iee.ucsb.edu/files/04%20Umesh%20Mishra%20Transphorm%20-%20IEE%20Summit.pdf
7.Taniyasu, Y., Kasu, M., and Makimoto, T.: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325328 (2006).
8.Ohkawa, K., Watanabe, T., Sakamoto, M., Hirako, A., and Deura, M.: 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. J. Cryst. Growth 343, 1316 (2012).
9.Kawaguchi, Y., Huang, C.Y., Wu, Y.R., Zhao, Y., DenBaars, S.P., and Nakamura, S.: Semipolar (20–21) single-quantum-well red light-emitting diodes with a low forward voltage. Jpn. J. Appl. Phys. 52, 08JC08 (2013).
10.Yoshida, H., Yamashita, Y., Kuwabara, M., and Kan, H.: Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett. 93, 241106 (2008).
11.Takagi, S., Enya, Y., Kyono, T., Adachi, M., Yoshizumi, Y., Sumitomo, T., Yamanaka, Y., Kumano, T., Tokuyama, S., Sumiyoshi, K., Saga, N., Ueno, M., Katayama, K., Ikegami, T., Nakamura, T., Yanashima, K., Nakajima, H., Tasai, K., Naganuma, K., Fuutagawa, N., Takiguchi, Y., Hamaguchi, T., Ikeda, M.: High-power (over 100 mW) green laser diodes on semipolar {20–21} GaN substrates operating at wavelengths beyond 530 nm. Appl. Phys. Express 5, 082102 (2012).
12.Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A.: Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 21732176 (1984).
13.Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I.: Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382L385 (1997).
14.Raring, J.W., Hall, E.M., Schmidt, M.C., Poblenz, C., Li, B., Pfister, N., Feezell, D.F., Craig, R., Speck, J.S., DenBaars, S.P., and Nakamura, S.: State-of-the-art continuous-wave InGaN laser diodes in the violet, blue and green wavelength regimes. Proc. SPIE 7686, 76860L (2010).
15.Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H.T., Menniger, J., Reiche, M., Uecker, R., Reiche, P., and Ploog, K.H.: Growth of m-plane GaN (1–100): a way to evade electrical polarization in nitrides. Phys. Status Solidi 180, 133138 (2000).
16.Craven, M.D., Lim, S.H., Wu, F., Speck, J.S., and DenBaars, S.P.: Structural characterization of nonpolar ($11\bar 20$) a-plane GaN thin films grown on ($1\bar 102$) r-plane sapphire. Appl. Phys. Lett. 81, 469 (2002).
17.Pan, C.-C., Tanaka, S., Wu, F., Zhao, Y., Speck, J.S., Nakamura, S., DenBaars, S.P., and Feezell, D.: High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes. Appl. Phys. Express 5, 062103 (2012).
18.Okamoto, K., Kashiwagi, J., Tanaka, T., and Kubota, M.: Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm. Appl. Phys. Lett. 94, 071105 (2009).
19.Enya, Y., Yoshizumi, Y., Kyono, T., Akita, K., Ueno, M., Adachi, M., Sumitomo, T., Tokuyama, S., Ikegami, T., Katayama, K., and Nakamura, T.: 531 nm green lasing of InGaN based laser diodes on semi-polar {20–21} free-standing GaN substrates. Appl. Phys. Express 2, 082101 (2009).
20.Ueno, M., Yoshizumi, Y., Enya, Y., Kyono, T., Adachi, M., Takagi, S., Tokuyama, S., Sumitomo, T., Sumiyoshi, K., Saga, N., Ikegami, T., Katayama, K., and Nakamura, T.: InGaN-based true green laser diodes on novel semi-polar {20-21} GaN substrates. J. Cryst. Growth 315, 258262 (2011).
21.Yoshizumi, Y., Adachi, M., Enya, Y., Kyono, T., Tokuyama, S., Sumitomo, T., Akita, K., Ikegami, T., Ueno, M., Katayama, K., and Nakamura, T.: Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {20–21} GaN substrates. Appl. Phys. Express 2, 092101 (2009).
22.Miyoshi, T., Masui, S., Okada, T., Yanamoto, T., Kozaki, T., Nagahama, S., and Mukai, T.: 510–515 nm InGaN-Based green laser diodes on c-plane GaN substrate. Appl. Phys. Express 2, 062201 (2009).
23.Masui, S., Miyoshi, T., Yanamoto, T., and Nagahama, S.: Blue and green laser diodes for large laser display. In Conf. Lasers Electro-Optics Pacific Rim. 1–2 (2013).
24.Jahangir, S., Frost, T., Hazari, A., Yan, L., Stark, E., LaMountain, T., Millunchick, J.M., Ooi, B.S., and Bhattacharya, P.: Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon. Appl. Phys. Lett. 106, 071108 (2015).
25.Frost, T., Jahangir, S., Stark, E., Deshpande, S., Hazari, A., Zhao, C., Ooi, B.S., and Bhattacharya, P.: Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett. 14, 45354541 (2014).
26.Zhang, M., Banerjee, A., Lee, C.-S., Hinckley, J.M., and Bhattacharya, P.: A InGaN/GaN quantum dot green (λ = 524 nm) laser. Appl. Phys. Express 98, 221104 (2011).
27.Frost, T., Banerjee, A., Sun, K., Chuang, S.L., and Bhattacharya, P.: InGaN/GaN quantum dot red (630 nm) laser. IEEE J. Quantum Electron. 49, 923931 (2013).
28.Kioupakis, E., Rinke, P., Delaney, K.T., and Van de Walle, C.G.: Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011).
29.Iveland, J., Martinelli, L., Peretti, J., Speck, J.S., and Weisbuch, C.: Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).
30.David, A. and Grundmann, M.J.: Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96, 103504 (2010).
31.Wierer, J.J., Tsao, J.Y., and Sizov, D.S.: Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. 7, 963993 (2013).
32.Funato, M., Kim, Y.S., Ochi, Y., Kaneta, A., Kawakami, Y., Miyoshi, T., and Nagahama, S.: Optical gain spectra of a (0001) InGaN green laser diode. Appl. Phys. Express 6, 122704 (2013).
33.Raring, J.W., Schmidt, M.C., Poblenz, C., Chang, Y.C., Mondry, M.J., Li, B., Iveland, J., Walters, B., Krames, M.R., Craig, R., Rudy, P., Speck, J.S., DenBaars, S.P., and Nakamura, S.: High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates. Appl. Phys. Express 3, 112101 (2010).
34.Brüninghoff, S., Eichler, C., Tautz, S., Lell, A., Sabathil, M., Lutgen, S., and Strauß, U.: 8W single-emitter InGaN laser in pulsed operation. Phys. Status Solidi 206, 11491152 (2009).
35.Pourhashemi, A., Farrell, R.M., Cohen, D.A., Speck, J.S., DenBaars, S.P., and Nakamura, S.: High-power blue laser diodes with indium tin oxide cladding on semipolar (20-2-1) GaN substrates. Appl. Phys. Lett. 106, 111105 (2015).
36.Vierheilig, C., Eichler, C., Tautz, S., Lell, A., Müller, J., Kopp, F., Stojetz, B., Hager, T., Brüderl, G., Avramescu, A., Lermer, T., Ristic, J., and Strauss, U.: Beyond blue pico laser: development of high power blue and low power direct green. Proc. SPIE 8277, 82770K 1–7 (2012).
37.Melo, T.: Analysis of gain and absorption spectra of GaN-based laser diodes. PhD dissertation, University of California, Santa Barbara (2012).
38.Michel, N., Lecomte, M., Parillaud, O., Calligaro, M., Nagle, J., and Krakowski, M.: Optimization of the wall-plug efficiency of Al-free active region diode lasers at 975 nm. Proc. SPIE 6997, 69971W 1–8 (2008).
39.Crump, P., Dong, W., Grimshaw, M., Wang, J., Patterson, S., Wise, D., DeFranza, M., Elim, S., Zhang, S., Bougher, M., Patterson, J., Das, S., Bell, J., Farmer, J., DeVito, M., and Martinsen, R.: 100-W+ diode laser bars show >71% power conversion from 790-nm to 1000-nm and have clear route to > 85%. Proc. SPIE 6456, 64560M (2007).
40.Li, H.X., Chyr, I., Jin, X., Reinhardt, F., Towe, T., Brown, D., Nguyen, T., Berube, M., Truchan, T., Hu, D., Miller, R., Srinivasan, R., Crum, T., Wolak, E., Bullock, R., Mott, J., and Harrison, J.: >700 W continuous-wave output power from single laser diode bar. Electron. Lett. 43, 1 (2007).
41.Kioupakis, E., Rinke, P., Schleife, A., Bechstedt, F., and Walle, C.: Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81, 241201 (2010).
42.Hardy, M.T., Holder, C.O., Feezell, D.F., Nakamura, S., Speck, J.S., Cohen, D.A., and DenBaars, S.P.: Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl. Phys. Lett. 103, 081103 (2013).
43.Chua, C., Yang, Z., Knollenberg, C., Teepe, M., Cheng, B., Strittmatter, A., Bour, D., and Johnson, N.M.: InAlGaN optical emitters – laser diodes with non-epitaxial cladding layers and ultraviolet light-emitting diodes. Proc. SPIE 7939, 793918 (2011).
44.Nedy, J., Young, N., Kelchner, K.M., Hu, Y., Farrell, R.M., Nakamura, S., DenBaars, S.P., Weisbuch, C., and Speck, J.S.: Low damage dry etch for III-nitride light emitters. Semicond. Sci. Technol., in press. (2015).
45.Abare, A.C., Hansen, M., Speck, J.S., DenBaars, S.P., and Coldren, L.A.: Electrically pumped distributed feedback nitride lasers employing embedded dielectric gratings. Electron. Lett. 35, 15591560 (1999).
46.Feezell, D.F., Schmidt, M.C., Farrell, R.M., Kim, K.-C., Saito, M., Fujito, K., Cohen, D.A., Speck, J.S., DenBaars, S.P., and Nakamura, S.: AlGaN-cladding-free nonpolar InGaN/GaN laser diodes. Jpn. J. Appl. Phys. 46, L284L286 (2007).
47.Kawaguchi, Y., Huang, S.-C., Farrell, R.M., Zhao, Y., Speck, J.S., DenBaars, S.P., and Nakamura, S.: Dependence of electron overflow on emission wavelength and crystallographic orientation in single-quantum-well III–nitride light-emitting diodes. Appl. Phys. Express 6, 052103 (2013).
48.Sizov, D., Bhat, R., Song, K., Allen, D., Paddock, B., Coleman, S., Hughes, L.C., and Zah, C.: 60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K. Appl. Phys. Express 4, 102103 (2011).
49.Wierer, J.J., Tsao, J.Y., and Sizov, D.S.: The potential of III-nitride laser diodes for solid-state lighting. Phys. Status Solidi 11, 674677 (2014).
50.Zhao, Y., Farrell, R.M., Wu, Y.-R., and Speck, J.S.: Valence band states and polarized optical emission from nonpolar and semipolar III – nitride quantum well optoelectronic devices. Jpn. J. Appl. Phys. 53, 100206 (2014).
51.Fujito, K., Kubo, S., and Fujimura, I.: Development of Bulk GaN crystals and nonpolar/semipolar substrates by HVPE. MRS Bull. 34, 313317 (2009).
52.Domen, K., Horino, K., Kuramata, A., and Tanahashi, T.: Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN. Appl. Phys. Lett. 71, 19961998 (1997).
53.Park, S.-H.: Crystal orientation effects on many-body optical gain of wurtzite InGaN/GaN quantum well lasers. Jpn. J. Appl. Phys. 42, L170L172 (2003).
54.Sizov, D., Bhat, R., Wang, J., Allen, D., Paddock, B., and Zah, C.: Development of semipolar laser diode. Phys. Status Solidi 210, 459465 (2013).
55.David, A., Grundmann, M.J., Kaeding, J.F., Gardner, N.F., Mihopoulos, T.G., and Krames, M.R.: Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 92, 053502 (2008).
56.Brinkley, S.E., Lin, Y.-D., Chakraborty, A., Pfaff, N., Cohen, D., Speck, J.S., Nakamura, S., and DenBaars, S.P.: Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Appl. Phys. Lett. 98, 011110 (2011).
57.Yamada, H., Iso, K., Saito, M., Hirasawa, H., Fellows, N., Masui, H., Fujito, K., Speck, J.S., DenBaars, S.P., and Nakamura, S.: Comparison of InGaN/GaN light emitting diodes grown on m-plane and a-plane bulk GaN substrates. Phys. Status Solidi 2, 8991 (2008).
58.Melo, T., Hu, Y.L., Weisbuch, C., Schmidt, M.C., David, A., Ellis, B., Poblenz, C., Lin, Y.-D., Krames, M., and Raring, J.: Gain comparison in polar and nonpolar/semipolar gallium-nitride-based laser diodes. Semicond. Sci. Technol. 27, 024015 (2012).
59.Kelchner, K.M., Kuritzky, L.Y., Fujito, K., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Emission characteristics of single InGaN quantum wells on misoriented nonpolar m-plane bulk GaN substrates. J. Cryst. Growth 382, 8086 (2013).
60.Kelchner, K.M., Kuritzky, L.Y., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Stable vicinal step orientations in m-plane GaN. J. Cryst. Growth 411, 5662 (2015).
61.Kuritzky, L.Y., Myers, D.J., Nedy, J., Kelchner, K.M., Nakamura, S., DenBaars, S.P., Weisbuch, C., and Speck, J.S.: Electroluminescence characteristics of blue InGaN quantum wells on m-plane GaN “double miscut” substrates. Appl. Phys. Express 8, 061002 (2015).
62.Fischer, A.M., Wu, Z., Sun, K., Wei, Q., Huang, Y., Senda, R., Iida, D., Iwaya, M., Amano, H., and Ponce, F.A.: Misfit strain relaxation by stacking fault generation in InGaN quantum wells grown on m-plane GaN. Appl. Phys. Express 2, 041002 (2009).
63.Wu, F., Lin, Y.-D., Chakraborty, A., Ohta, H., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN. Appl. Phys. Lett. 96, 231912 (2010).
64.Zhao, Y., Yan, Q., Huang, C.-Y., Huang, S.-C., Hsu, P.S., Tanaka, S., Pan, C.-C., Kawaguchi, Y., Fujito, K., Van de Walle, C.G., Speck, J.S., DenBaars, S.P., Nakamura, S., and Feezell, D.: Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. Appl. Phys. Lett. 100, 201108 (2012).
65.Hsu, P.S.: Stress-relaxation in III-nitride based semipolar lasers. PhD dissertation, University of California, Santa Barbara (2013).
66.Hardy, M.T., Young, E.C., Shan Hsu, P., Haeger, D.A., Koslow, I.L., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Suppression of m-plane and c-plane slip through Si and Mg doping in partially relaxed (20–21) InGaN/GaN heterostructures. Appl. Phys. Lett. 101, 132102 (2012).
67.Nishizuka, K., Funato, M., Kawakami, Y., Fujita, S., Narukawa, Y., and Mukai, T.: Efficient radiative recombination from (11–22) -oriented InxGa1-xN multiple quantum wells fabricated by the regrowth technique. Appl. Phys. Lett. 85, 31223124 (2004).
68.Zhao, Y., Tanaka, S., Yan, Q., Huang, C.Y., Chung, R.B., Pan, C.C., Fujito, K., Feezell, D., Van De Walle, C.G., Speck, J.S., Denbaars, S.P., and Nakamura, S.: High optical polarization ratio from semipolar (20-2-1) blue-green InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 99, 051109 (2011).
69.Megalini, L., Becerra, D.L., Farrell, R.M., Pourhashemi, A., Speck, J.S., Nakamura, S., Denbaars, S.P., and Cohen, D.A.: Continuous-wave operation of a (20-2-1) InGaN laser diode with a photoelectrochemically etched current aperture. Appl. Phys. Express 8, 042701 (2015).
70.Wu, F., Zhao, Y., Romanov, A., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Stacking faults and interface roughening in semipolar (20-2-1) single InGaN quantum wells for long wavelength emission. Appl. Phys. Lett. 104, 151901 (2014).
71.Feezell, D.F., Schmidt, M.C., DenBaars, S.P., and Nakamura, S.: Development of nonpolar and semipolar InGaN/GaN visible light-emitting diodes. MRS Bull. 34, 318323 (2009).
72.Miyoshi, T., Masui, S., Okada, T., Yanamoto, T., Kozaki, T., Nagahama, S.I., and Mukai, T.: InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate. Phys. Status Solidi 207, 13891392 (2010).
73.Lutgen, S., Avramescu, A., Lermer, T., Queren, D., Müller, J., Bruederl, G., and Strauss, U.: True green InGaN laser diodes. Phys. Status Solidi 207, 13181322 (2010).
74.Avramescu, A., Lermer, T., Müller, J., Eichler, C., Bruederl, G., Sabathil, M., Lutgen, S., and Strauss, U.: True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN. Appl. Phys. Express 3, 061003 (2010).
75.Raring, J.W., Hall, E.M., Schmidt, M.C., Poblenz, C., Li, B., Pfister, N., Feezell, D.F., Craig, R., Speck, J.S., DenBaars, S.P., and Nakamura, S.: High-power high-efficiency continuous-wave InGaN laser diodes in the violet, blue, and green wavelength regimes. Proc. SPIE 7602, 760218 (2010).
76.Adachi, M., Yoshizumi, Y., Enya, Y., Kyono, T., Sumitomo, T., Tokuyama, S., Takagi, S., Sumiyoshi, K., Saga, N., Ikegami, T., Ueno, M., Katayama, K., and Nakamura, T.: Low threshold current density InGaN based 520–530 nm green laser diodes on semi-polar {20–21} free-standing GaN substrates. Appl. Phys. Express 3, 121001 (2010).
77.Yanashima, K., Nakajima, H., Tasai, K., Naganuma, K., Fuutagawa, N., Takiguchi, Y., Hamaguchi, T., Ikeda, M., Enya, Y., Takagi, S., Adachi, M., Kyono, T., Yoshizumi, Y., Sumitomo, T., Yamanaka, Y., Kumano, T., Tokuyama, S., Sumiyoshi, K., Saga, N., Ueno, M., Katayama, K., Ikegami, T., Nakamura, T.: Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar {20–21} GaN substrates. Appl. Phys. Express 5, 082103 (2012).
78.Avramescu, A., Lermer, T., Müller, J., Tautz, S., Queren, D., Lutgen, S., and Strauss, U.: InGaN laser diodes with 50 mW output power emitting at 515 nm. Appl. Phys. Lett. 95, 071103 (2009).
79.Tyagi, A., Farrell, M.R., Kelchner, K.M., Huang, C.Y., Hsu, P.S., Haeger, D.A., Hardy, M.T., Holder, C., Fujito, K., Cohen, D.A., Ohta, H., Speck, J.S., DenBaars, S.P., and Nakamura, S.: AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm. Appl. Phys. Express 3, 011002 (2010).
80.Lin, Y.-D., Yamamoto, S., Huang, C.Y., Hsiung, C.L., Wu, F., Fujito, K., Ohta, H., Speck, J.S., Denbaars, S.P., and Nakamura, S.: High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes. Appl. Phys. Express 3, 082001 (2010).
81.Hardy, M.T., Wu, F., Shan Hsu, P., Haeger, D.A., Nakamura, S., Speck, J.S., and DenBaars, S.P.: True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy. J. Appl. Phys. 114, 183101 (2013).
82.Masui, S., Miyoshi, T., Yanamoto, T., and Nagahama, S.: 1 W AlInGaN based green laser diodes. In Conf. Lasers Electro-Optics Pacific Rim, 2013; pp. 1–2.
83.Zhao, Y., Yan, Q., Feezell, D., Fujito, K., Van De Walle, C.G., Speck, J.S., Denbaars, S.P., and Nakamura, S.: Optical polarization characteristics of semipolar (30–31) and (30-3-1) InGaN/GaN light-emitting diodes. Opt. Express 21, A53A59 (2013).
84.Hsu, P.S., Young, E.C., Romanov, A.E., Fujito, K., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Misfit dislocation formation via pre-existing threading dislocation glide in (11–22) semipolar heteroepitaxy. Appl. Phys. Lett. 99, 081912 (2011).
85.Hsu, P.S., Hardy, M.T., Young, E.C., Romanov, A.E., DenBaars, S.P., Nakamura, S., and Speck, J.S.: Stress relaxation and critical thickness for misfit dislocation formation in (10-10) and (30-3-1) InGaN/GaN heteroepitaxy. Appl. Phys. Lett. 100, 171917 (2012).
86.Wu, F., Young, E.C., Koslow, I., Hardy, M.T., Hsu, P.S., Romanov, A.E., Nakamura, S., DenBaars, S.P., and Speck, J.S.: Observation of non-basal slip in semipolar InxGa1-xN/GaN heterostructures. Appl. Phys. Lett. 99, 251909 (2011).
87.Hsu, P.S., Hardy, M.T., Wu, F., Koslow, I., Young, E.C., Romanov, A.E., Fujito, K., Feezell, D.F., DenBaars, S.P., Speck, J.S., and Nakamura, S.: 444.9 nm semipolar (11–22) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer. Appl. Phys. Lett. 100, 021104 (2012).
88.Hardy, M.T., Nakamura, S., Speck, J.S., and DenBaars, S.P.: Suppression of relaxation in (20–21) InGaN/GaN laser diodes using limited area epitaxy. Appl. Phys. Lett. 101, 241112 (2012).
89.Hsu, P.S., Wu, F., Young, E.C., Romanov, A.E., Fujito, K., DenBaars, S.P., Speck, J.S., and Nakamura, S.: Blue and aquamarine stress-relaxed semipolar (11–22) laser diodes. Appl. Phys. Lett. 103, 161117 (2013).
90.Short, J.E.: How much media? 2013 Report on American consumers, 2013.
91.Grubor, J., Randel, S., Langer, K.-D., and Walewski, J.W.: Broadband information broadcasting using LED-based interior lighting. J. Lightw. Technol. 26, 38833892 (2008).
92.Mckendry, J.J.D., Massoubre, D., Zhang, S., Rae, B.R., Green, R.P., Gu, E., Henderson, R.K., Kelly, A.E., and Dawson, M.D.: Visible-light communications using a CMOS-controlled micro-light emitting-diode array. J. Lightw. Technol. 30, 6167 (2012).
93.Tsonev, D., Chun, H., Rajbhandari, S., McKendry, J.J.D., Videv, S., Gu, E., Haji, M., Watson, S., Kelly, A.E., Faulkner, G., Dawson, M.D., Haas, H., and O'Brien, D.: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technol. Lett. 26, 637640 (2014).
94.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H.: Optical gain and carrier lifetime of InGaN multiquantum well structure laser diodes. Appl. Phys. Lett. 69, 1568 (1996).
95.Watson, S., Tan, M., Najda, S.P., Perlin, P., Leszczynski, M., Targowski, G., Grzanka, S., and Kelly, A.: Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 38, 37923794 (2013).
96.Lee, C., Zhang, C., Cantore, M., Farrell, R.M., Oh, S., Margalith, T., Speck, J.S., Nakamura, S., Bowers, J.E., and DenBaars, S.P.: 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express 23, 1623216237 (2015).
97.Grobe, L., Paraskevopoulos, A., Hilt, J., Schulz, D., Lassak, F., Hartlieb, F., Kottke, C., Jungnickel, V., and Langer, K.-D.: High-speed visible light communication systems. IEEE Commun. Mag., December, 6066 (2013).
98.Neumann, A., Wierer, J.J., Davis, W., Ohno, Y., Brueck, S.R.J., and Tsao, J.Y.: Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982A990 (2011).
99.Schubert, E.F. and Kim, J.K.: Solid-state light sources getting smart. Science 308, 12741279 (2005).
100.Berson, D.M., Dunn, F.A., and Takao, M.: Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073 (2002).
101.Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W.: Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 10651070 (2002).
102.Brainard, G.C., Sliney, D., Hanifin, J.P., Glickman, G., Byrne, B., Greeson, J.M., Jasser, S., Gerner, E., and Rollag, M.D.: Sensitivity of the human circadian system to short wavelength (420 nm) light. J. Biol. Rhythms 23, 379386 (2008).
103.Vosko, A.M., Colwell, C.S., and Avidan, A.Y.: Jet lag syndrome: Circadian organization, pathophysiology, and management strategies. Nat. Sci. Sleep 2, 187198 (2010).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed