Skip to main content Accessibility help
×
Home

Isotope engineering of silicon and diamond for quantum computing and sensing applications

  • Kohei M. Itoh (a1) and Hideyuki Watanabe (a2)

Abstract

Some of the stable isotopes of silicon and carbon have zero nuclear spin, whereas many of the other elements that constitute semiconductors consist entirely of stable isotopes that have nuclear spins. Silicon and diamond crystals composed of nuclear-spin-free stable isotopes (28Si, 30Si, or 12C) are considered to be ideal host matrixes to place spin quantum bits (qubits) for quantum-computing and -sensing applications, because their coherent properties are not disrupted thanks to the absence of host nuclear spins. The present paper describes the state-of-the-art and future perspective of silicon and diamond isotope engineering for development of quantum information-processing devices.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Isotope engineering of silicon and diamond for quantum computing and sensing applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Isotope engineering of silicon and diamond for quantum computing and sensing applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Isotope engineering of silicon and diamond for quantum computing and sensing applications
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Address all correspondence to Kohei M. Itoh at kitoh@appi.keio.ac.jp

References

Hide All
1.Haller, E.E.: Isotopically engineered semiconductors. J. Appl. Phys. 77, 2857 (1995).
2.Cardona, M. and Thewalt, M.L.W.: Isotope effects on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173 (2005).
3.Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998).
4.Ladd, T.D., Goldman, J.R., Yamaguchi, F., Yamamoto, Y., Abe, E., and Itoh, K.M.: All-silicon quantum computer. Phys. Rev. Lett. 89, 017901 (2002).
5.Shlimak, I., Safarov, V.I., and Vagner, I.D.: Isotopically engineered silicon/silicon–germanium nanostructures as basic elements for a nuclear spin quantum computer. J. Phys. –Condens. Matter 13, 6059 (2001).
6.Itoh, K.M.: An all-silicon linear chain NMR quantum computer. Solid State Commun. 133, 747 (2005).
7.Jelezko, F., Popa, I., Gruber, A., Tietz, C., Wrachtrup, J., Nizovtsev, A., and Kilin, S.: Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 81, 2160 (2002).
8.Jelezko, F., Gaebel, T., Popa, I., Gruber, A., and Wrachtrup, J.: Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).
9.Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., and Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).
10.Wrachtrup, J. and Jelezko, F.: Processing quantum information in diamond. J. Phys. –Condens. Matter 18, S807 (2006).
11.Degen, C.L.: Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).
12.Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Walsworth, R., and Lukin, M.D.: High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810 (2008).
13.Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Dutt, M.V.G., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., and Lukin, M.D.: Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644 (2008).
14.Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., and Wrachtrup, J.: Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648 (2008).
15.Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., and Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009).
16.Zwanenburg, F.A., Dzurak, A.S., Morello, A., Simmons, M.Y., Hollenberg, L.C.L., Klimeck, G., Rogge, S., Coppersmith, S.N., and Eriksson, M.A.: Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013).
17.Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., and DiVincenzo, D.: Electron-spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).
18.de Sausa, R., Delgado, J.D., and Das Sarma, S.: Silicon quantum computation based on magnetic dipolar coupling. Phys. Rev. A 70, 052304 (2004).
19.Hollenberg, L.C.L., Greentree, A.D., Fowler, A.G., and Wellard, C.J.: Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).
20.Friesen, M., Rugheimer, P., Savage, D.E., Lagally, M.G., van der Weide, D.W., Joynt, R., and Eriksson, M.A.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301(R) (2003).
21.Eriksson, M.A., Coppersmith, S.N., and Lagally, M.G.: Semiconductor quantum dot qubits. MRS Bull. 38, 794 (2013).
22.Shi, Z., Simmons, C.B., Prance, J.R., Gamble, J.K., Koh, T.S., Shim, Y.P., Hu, X.D., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., and Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012).
23.Itoh, K.M., Kato, J., Uemura, M., Kaliteevski, A.K., Godisov, O.N., Devyatych, G.G., Bulanov, A.D., Gusev, A.V., Kovalev, I.D., Sennikov, P.G., Pohl, H.J., Abrosimov, N.V., and Riemann, H.: High purity isotopically enriched Si-29 and Si-30 single crystals: isotope separation, purification, and growth. Jpn. J. Appl. Phys. 1 – Regul. Pap. Short Notes Rev. Paper. 42, 6248 (2003).
24.Sennikov, P.G., Vodopyanov, A.V., Golubev, S.V., Mansfeld, D.A., Drozdov, M.N., Drozdov, Y.N., Andreev, B.A., Gavrilenko, L.V., Pryakhin, D.A., Shashkin, V.I., Godisov, O.N., Glasunov, A.I., Safonov, A.J., Pohl, H.J., Thewalt, M.L.W., Becker, P., Riemann, H., Abrosimov, N.V., and Valkiers, S.: Towards 0.99999 Si-28. Solid State Commun. 152, 455 (2012).
25.Gordon, J.P. and Bowers, K.D.: Microwave spin echoes from donor electrons in silicon. Phys. Rev. Lett. 1, 368 (1958).
26.Becker, P., Bettin, H., Debievre, P., Holm, C., Kutgens, U., Spieweck, F., Stumpel, J., Valkiers, S., and Zulehner, W.: The Si-28 path to the Avogadro constant – first experiments and outlook. IEEE Trans. Instrum. Meas. 44, 522 (1995).
27.Fujii, K., Waseda, A., and Kuramoto, N.: Development of a silicon density standard and precision density measurements of solid materials by hydrostatic weighing. Meas. Sci. Technol. 12, 2031 (2001).
28.Becker, P., Pohl, H.J., Riemann, H., and Abrosimov, N.: Enrichment of silicon for a better kilogram. Phys. Status Solidi A – Appl. Mater. 207, 49 (2010).
29.Sozontov, E., Cao, L.X., Kazimirov, A., Kohn, V., Konuma, M., Cardona, M., and Zegenhagen, J.: X-ray standing wave analysis of the effect of isotopic composition on the lattice constants of Si and Ge. Phys. Rev. Lett. 86, 5329 (2001).
30.Yang, A., Steger, M., Lian, H.J., Thewalt, M.L.W., Uemura, M., Sagara, A., Itoh, K.M., Haller, E.E., Ager, J.W., Lyon, S.A., Konuma, M., and Cardona, M.: High-resolution photoluminescence measurement of the isotopic-mass dependence of the lattice parameter of silicon. Phys. Rev. B 77, 113203 (2008).
31.Becker, P., Schiel, D., Pohl, H.J., Kaliteevski, A.K., Godisov, O.N., Churbanov, M.F., Devyatykh, G.G., Gusev, A.V., Bulanov, A.D., Adamchik, S.A., Gavva, V.A., Kovalev, I.D., Abrosimov, N.V., Hallmann-Seiffert, B., Riemann, H., Valkiers, S., Taylor, P., De Bievre, P., and Dianov, E.M.: Large-scale production of highly enriched Si-28 for the precise determination of the Avogadro constant. Meas. Sci. Technol. 17, 1854 (2006).
32.Becker, P.: Determination of the Avogadro constant – a contribution to the new definition of the mass unit kilogram. Eur. Phys. J. – Spec. Top. 172, 343 (2009).
33.Bulanov, A.D., Devyatych, G.G., Gusev, A.V., Sennikov, P.G., Pohl, H.J., Riemann, H., Schilling, H., and Becker, P.: The highly isotopic enriched (99.9%), high-pure Si-28 single crystal. Cryst. Res. Technol. 35, 1023 (2000).
34.Ager, J.W., Beeman, J.W., Hansen, W.L., Haller, E.E., Sharp, I.D., Liao, C., Yang, A., Thewalt, M.L.W., and Riemann, H.: High-purity, isotopically enriched bulk silicon. J. Electrochem. Soc. 152, G448 (2005).
35.Thewalt, M.L.W., Steger, M., Yang, A., Stavrias, N., Cardona, M., Riemann, H., Abrosimov, N.V., Churbanov, M.F., Gusev, A.V., Bulanov, A.D., Kovalev, I.D., Kaliteevskii, A.K., Godisov, O.N., Becker, P., Pohl, H.J., Ager, J.W., and Haller, E.E.: Can highly enriched Si-28 reveal new things about old defects? Physica B 401, 587 (2007).
36.Steger, M., Yang, A., Stavrias, N., Thewalt, M.L.W., Riemann, H., Abrosimov, N.V., Churbanov, M.F., Gusev, A.V., Bulanov, A.D., Kovalev, I.D., Kaliteevskii, A.K., Godisov, O.N., Becker, P., and Pohl, H.J.: Reduction of the linewidths of deep luminescence centers in (28)Si reveals fingerprints of the isotope constituents. Phys. Rev. Lett. 100, 177402 (2008).
37.Kato, J., Itoh, K.M., Yamada-Kaneta, H., and Pohl, H.J.: Host isotope effect on the localized vibrational modes of oxygen in isotopically enriched Si-28, Si-29, and Si-30 single crystals. Phys. Rev. B 68, 035205 (2003).
38.Morton, J.J.L., Tyryshkin, A.M., Brown, R.M., Shankar, S., Lovett, B.W., Ardavan, A., Schenkel, T., Haller, E.E., Ager, J.W., and Lyon, S.A.: Solid-state quantum memory using the (31)P nuclear spin. Nature 455, 1085 (2008).
39.Takyu, K., Itoh, K.M., Oka, K., Saito, N., and Ozhogin, V.I.: Growth and characterization of the isotopically enriched Si-28 bulk single crystal. Jpn. J. Appl. Phys. 2 – Lett. 38, L1493 (1999).
40.Abe, E., Itoh, K.M., Isoya, J., and Yamasaki, S.: Electron-spin phase relaxation of phosphorus donors in nuclear-spin-enriched silicon. Phys. Rev. B 70, 033204 (2004).
41.Lo, C.C., Persaud, A., Dhuey, S., Olynick, D., Borondics, F., Martin, M.C., Bechtel, H.A., Bokor, J., and Schenkel, T.: Device fabrication and transport measurements of FinFETs built with Si-28 SOI wafers toward donor qubits in silicon. Semicond. Sci. Technol. 24, 105022 (2009).
42.Sailer, J., Lang, V., Abstreiter, G., Tsuchiya, G., Itoh, K.M., Ager, J.W., Haller, E.E., Kupidura, D., Harbusch, D., Ludwig, S., and Bougeard, D.: A Schottky top-gated two-dimensional electron system in a nuclear spin free Si/SiGe heterostructure. Phys. Status Solidi – Rapid Res. Lett. 3, 61 (2009).
43.Li, J.Y., Huang, C.T., Rokhinson, L.P., and Sturm, J.C.: Extremely high electron mobility in isotopically-enriched Si-28 two-dimensional electron gases grown by chemical vapor deposition. Appl. Phys. Lett. 103, 162105 (2013).
44.Wild, A., Kierig, J., Sailer, J., Ager, J.W., Haller, E.E., Abstreiter, G., Ludwig, S., and Bougeard, D.: Few electron double quantum dot in an isotopically purified Si-28 quantum well. Appl. Phys. Lett. 100, 143110 (2012).
45.Kojima, T., Nebashi, R., Itoh, K.M., and Shiraki, Y.: Growth and characterization of Si-28(n)/Si-30(n) isotope superlattices. Appl. Phys. Lett. 83, 2318 (2003).
46.Shimizu, Y., Kawamura, Y., Uematsu, M., Itoh, K.M., Tomita, M., Sasaki, M., Uchida, H., and Takahashi, M.: Atom probe microscopy of three-dimensional distribution of silicon isotopes in Si-28/Si-30 isotope superlattices with sub-nanometer spatial resolution. J. Appl. Phys. 106, 076102 (2009).
47.Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y., and Itoh, K.M.: Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J. Appl. Phys. 109, 036102 (2011).
48.Bracht, H., Wehmeier, N., Eon, S., Plech, A., Issenmann, D., Hansen, J.L., Larsen, A.N., Ager, J.W., and Haller, E.E.: Reduced thermal conductivity of isotopically modulated silicon multilayer structures. Appl. Phys. Lett. 101, 064103 (2012).
49.Bracht, H., Haller, E.E., and Clark-Phelps, R.: Silicon self-diffusion in isotope heterostructures. Phys. Rev. Lett. 81, 393 (1998).
50.Bracht, H., Pedersen, J.F., Zangenberg, N., Larsen, A.N., Haller, E.E., Lulli, G., and Posselt, M.: Radiation enhanced silicon self-diffusion and the silicon vacancy at high temperatures. Phys. Rev. Lett. 91, 245502 (2003).
51.Shimizu, Y., Uematsu, M., and Itoh, K.M.: Experimental evidence of the vacancy-mediated silicon self-diffusion in single-crystalline silicon. Phys. Rev. Lett. 98, 095901 (2007).
52.Shimizu, Y., Uematsu, M., Itoh, K.M., Takano, A., Sawano, K., and Shiraki, Y.: Behaviors of neutral and charged silicon self-interstitials during transient enhanced diffusion in silicon investigated by isotope superlattices. J. Appl. Phys. 105, 013504 (2009).
53.Shimizu, Y., Uematsu, M., Itoh, K.M., Takano, A., Sawano, K., and Shiraki, Y.: Quantitative evaluation of silicon displacement induced by arsenic implantation using silicon isotope superlattices. Appl. Phys. Express 1, 021401 (2008).
54.Chiba, M. and Hirai, A.: Electron-spin echo decay behaviors of phosphorus doped silicon. J. Phys. Soc. Jpn. 33, 730 (1972).
55.Abe, E., Isoya, J., and Itoh, K.M.: Electron spin coherence of phosphorus donors in isotopically purified Si-29. J. Supercond. 18, 157 (2005).
56.Abe, E., Isoya, J., and Itoh, K.M.: Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si. Physica B 376, 28 (2006).
57.Abe, E., Tyryshkin, A.M., Tojo, S., Morton, J.J.L., Witzel, W.M., Fujimoto, A., Ager, J.W., Haller, E.E., Isoya, J., Lyon, S.A., Thewalt, M.L.W., and Itoh, K.M.: Electron spin coherence of phosphorus donors in silicon: effect of environmental nuclei. Phys. Rev. B 82, 121201 (2010).
58.Witzel, W.M., Hu, X.D., and Sarma, S.D.: Decoherence induced by anisotropic hyperfine interaction in Si spin qubits. Phys. Rev. B 76, 035212 (2007).
59.Witzel, W.M. and Das Sarma, S.: Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).
60.de Sousa, R. and Das Sarma, S.: Theory of nuclear-induced spectral diffusion: spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).
61.Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., and Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003).
62.Tyryshkin, A.M., Tojo, S., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Schenkel, T., Thewalt, M.L.W., Itoh, K.M., and Lyon, S.A.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143 (2012).
63.Steger, M., Saeedi, K., Thewalt, M.L.W., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., and Pohl, H.J.: Quantum information storage for over 180 s using donor spins in a Si-28 “Semiconductor Vacuum”. Science 336, 1280 (2012).
64.Saeedi, K., Simmons, S., Salvail, J.Z., Dluhy, P., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Morton, J.J.L., and Thewalt, M.L.W.: Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830 (2013).
65.Wolfowicz, G., Simmons, S., Tyryshkin, A.M., George, R.E., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Lyon, S.A., Thewalt, M.L.W., and Morton, J.J.L.: Decoherence mechanisms of Bi-209 donor electron spins in isotopically pure Si-28. Phys. Rev. B 86, 245301 (2012).
66.Wolfowicz, G., Tyryshkin, A.M., George, R.E., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Thewalt, M.L.W., Lyon, S.A., and Morton, J.J.L.: Atomic clock transitions in silicon-based spin qubits. Nat. Nanotechnol. 8, 561 (2013).
67.Mortemousque, P.A., Berger, S., Sekiguchi, T., Culan, C., Elliman, R.G., and Itoh, K.M.: Hyperfine clock transitions of bismuth donors in silicon detected by spin-dependent recombination. Phys. Rev. B 89, 155202 (2014).
68.Mortemousque, P.A., Sekiguchi, T., Culan, C., Vlasenko, M.P., Elliman, R.G., Vlasenko, L.S., and Itoh, K.M.: Spin dependent recombination based magnetic resonance spectroscopy of bismuth donor spins in silicon at low magnetic fields. Appl. Phys. Lett. 101, 082409 (2012).
69.Ladd, T.D., Maryenko, D., Yamamoto, Y., Abe, E., and Itoh, K.M.: Coherence time of decoupled nuclear spins in silicon. Phys. Rev. B 71, 014401 (2005).
70.Simmons, S., Brown, R.M., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Thewalt, M.L.W., Itoh, K.M., and Morton, J.J.L.: Entanglement in a solid-state spin ensemble. Nature 470, 69 (2011).
71.Yang, A., Steger, M., Karaiskaj, D., Thewalt, M.L.W., Cardona, M., Itoh, K.M., Riemann, H., Abrosimov, N.V., Churbanov, M.F., Gusev, A.V., Bulanov, A.D., Kaliteevskii, A.K., Godisov, O.N., Becker, P., Pohl, H.J., Ager, J.W., and Haller, E.E.: Optical detection and ionization of donors in specific electronic and nuclear spin states. Phys. Rev. Lett. 97, 227401 (2006).
72.Steger, M., Sekiguchi, T., Yang, A., Saeedi, K., Hayden, M.E., Thewalt, M.L.W., Itoh, K.M., Riemann, H., Abrosimov, N.V., Becker, P., and Pohl, H.J.: Optically-detected NMR of optically-hyperpolarized P-31 neutral donors in Si-28. J. Appl. Phys. 109, 102411 (2011).
73.Thewalt, M.L.W., Yang, A., Steger, M., Karaiskaj, D., Cardona, M., Riemann, H., Abrosimov, N.V., Gusev, A.V., Bulanov, A.D., Kovalev, I.D., Kaliteevskii, A.K., Godisov, O.N., Becker, P., Pohl, H.J., Haller, E.E., Ager, J.W., and Itoh, K.M.: Direct observation of the donor nuclear spin in a near-gap bound exciton transition: P-31 in highly enriched Si-28. J. Appl. Phys. 101, 081724 (2007).
74.Yang, A., Steger, M., Sekiguchi, T., Thewalt, M.L.W., Ladd, T.D., Itoh, K.M., Riemann, H., Abrosimov, N.V., Becker, P., and Pohl, H.J.: Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 257401 (2009).
75.Lo, C.C., Weis, C.D., van Tol, J., Bokor, J., and Schenkel, T.: All-electrical nuclear spin polarization of donors in silicon. Phys. Rev. Lett. 110, 057601 (2013).
76.Sekiguchi, T., Steger, M., Saeedi, K., Thewalt, M.L.W., Riemann, H., Abrosimov, N.V., and Notzel, N.: Hyperfine structure and nuclear hyperpolarization observed in the bound exciton luminescence of Bi donors in natural Si. Phys. Rev. Lett. 104, 137402 (2010).
77.Saeedi Ilkhchy, K., Steger, M., Thewalt, M.L.W., Abrosimov, N., Riemann, H., Becker, P., and Pohl, H.-J.: Bi donor hyperfine state populations studied by optical transitions of donor bound excitons in enriched Si-28. AIP Conf. Proc. 1566, 552 (2013).
78.Verhulst, A.S., Maryenko, D., Yamamoto, Y., and Itoh, K.M.: Double and single peaks in nuclear magnetic resonance spectra of natural and Si-29-enriched single-crystal silicon. Phys. Rev. B 68, 054105 (2003).
79.Verhulst, A.S., Rau, I.G., Yamamoto, Y., and Itoh, K.M.: Optical pumping of Si-29 nuclear spins in bulk silicon at high magnetic field and liquid helium temperature. Phys. Rev. B 71, 235206 (2005).
80.Hayashi, H., Itoh, K.M., and Vlasenko, L.S.: Nuclear magnetic resonance linewidth and spin diffusion in (29)Si isotopically controlled silicon. Phys. Rev. B 78, 153201 (2008).
81.Hayashi, H., Itahashi, T., Itoh, K.M., Vlasenko, L.S., and Vlasenko, M.P.: Dynamic nuclear polarization of Si-29 nuclei in isotopically controlled phosphorus doped silicon. Phys. Rev. B 80, 045201 (2009).
82.Akhtar, W., Morishita, H., Sawano, K., Shiraki, Y., Vlasenko, L.S., and Itoh, K.M.: Electrical detection of cross relaxation between electron spins of phosphorus and oxygen-vacancy centers in silicon. Phys. Rev. B 84, 045204 (2011).
83.Akhtar, W., Filidou, V., Sekiguchi, T., Kawakami, E., Itahashi, T., Vlasenko, L., Morton, J.J.L., and Itoh, K.M.: Coherent storage of photoexcited triplet states using Si-29 nuclear spins in silicon. Phys. Rev. Lett. 108, 097601 (2012).
84.Akhtar, W., Sekiguchi, T., Itahashi, T., Filidou, V., Morton, J.J.L., Vlasenko, L., and Itoh, K.M.: Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon. Phys. Rev. B 86, 115206 (2012).
85.Wu, H., George, R.E., Wesenberg, J.H., Molmer, K., Schuster, D.I., Schoelkopf, R.J., Itoh, K.M., Ardavan, A., Morton, J.J.L., and Briggs, G.A.D.: Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010).
86.Wu, H., Gauger, E.M., George, R.E., Mottonen, M., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Itoh, K.M., Thewalt, M.L.W., and Morton, J.J.L.: Geometric phase gates with adiabatic control in electron spin resonance. Phys. Rev. A 87, 032326 (2013).
87.Knee, G.C., Simmons, S., Gauger, E.M., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Itoh, K.M., Thewalt, M.L.W., Briggs, G.A.D., and Benjamin, S.C.: Violation of a Leggett-Garg inequality with ideal non-invasive measurements. Nat. Commun. 3, 606 (2012).
88.Tezuka, H., Stegner, A.R., Tyryshkin, A.M., Shankar, S., Thewalt, M.L.W., Lyon, S.A., Itoh, K.M., and Brandt, M.S.: Electron paramagnetic resonance of boron acceptors in isotopically purified silicon. Phys. Rev. B 81, 161203 (2010).
89.Stegner, A.R., Tezuka, H., Andlauer, T., Stutzmann, M., Thewalt, M.L.W., Brandt, M.S., and Itoh, K.M.: Isotope effect on electron paramagnetic resonance of boron acceptors in silicon. Phys. Rev. B 82, 115213 (2010).
90.Lo, C.C., Bokor, J., Schenkel, T., Tyryshkin, A.M., and Lyon, S.A.: Spin-dependent scattering off neutral antimony donors in (28)Si field-effect transistors. Appl. Phys. Lett. 91, 242106 (2007).
91.Yoshida, S., Sekiguchi, T., and Itoh, K.M.: Atomically straight steps on vicinal Si(111) surfaces prepared by step-parallel current in the kink-up direction. Appl. Phys. Lett. 87, 106101 (2005).
92.Sekiguchi, T., Yoshida, S., and Itoh, K.M.: Self-assembly of parallel atomic wires and periodic clusters of silicon on a vicinal Si(111) surface. Phys. Rev. Lett. 95, 106101 (2005).
93.Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schmitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., and Hunter, A.T.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344 (2012).
94.Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Jamieson, D.N., Dzurak, A.S., and Morello, A.: A single-atom electron spin qubit in silicon. Nature 489, 541 (2012).
95.Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Zwanenburg, F.A., Jamieson, D.N., Dzurak, A.S., and Morello, A.: High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334 (2013).
96.Shi, Z., Simmons, C.B., Ward, D.R., Prance, J.R., Mohr, R.T., Koh, T.S., Gamble, J.K., Wu, X., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., and Eriksson, M.A.: Coherent quantum oscillations and echo measurements of a Si charge qubit. Phys. Rev. B 88, 075416 (2013).
97.Muhonen, J.T., Dehollain, J.P., Laucht, A., Hudson, F.E., Karla, R., Sekiguchi, T., Itoh, K.M., Jamieson, D.N., McCallum, J.C., Dzurak, A.S., and Morello, A.: Storing quantum information for 30 seconds in a nanodelectronic device. Nat. Nanotechnol., DOI: 10.1038/nnano.2014.211 (2014).
98.Veldhorst, M., Hwang, J.C.C., Yang, C.H., Leenstra, A.W., de Ronde, B., Dehollain, J.P., Muhonen, J.T., Hudson, F.E., Itoh, K.M., Morello, A., and Dzurak, A.S.: An addressable quantum dot qubit with fault-tolerant control fidelity. Nat. Nanotechnol., DOI: 10.1038/nnano.2014.216 (2014).
99.Laucht, A., Hill, C.D., and Morello, A.: Robust two-qubit gates for donors in silicon controlled by hyperfine interactions. Phys. Rev. X 4, 021044 (2014).
100.Shahriar, M.S., Hemmer, P.R., Lloyd, S., Bhatia, P.S., and Craig, A.E.: Solid-state quantum computing using spectral holes. Phys. Rev. A 66, 032301 (2002).
101.Gruber, A., Drabenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., and vonBorczyskowski, C.: Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012 (1997).
102.Jelezko, F., Tietz, C., Gruber, A., Popa, I., Nizovtsev, A., Kilin, S., and Wrachtrup, J.: Spectroscopy of single N-V centers in diamond. Single Mol. 2, 255 (2001).
103.Jelezko, F. and Wrachtrup, J.: Single defect centres in diamond: a review. Phys. Status Solidi A – Appl. Mater. 203, 3207 (2006).
104.Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., and Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281 (2006).
105.Dutt, M.V.G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A.S., Hemmer, P.R., and Lukin, M.D.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312 (2007).
106.Maurer, P.C., Maze, J.R., Stanwix, P.L., Jiang, L., Gorshkov, A.V., Zibrov, A.A., Harke, B., Hodges, J.S., Zibrov, A.S., Yacoby, A., Twitchen, D., Hell, S.W., Walsworth, R.L., and Lukin, M.D.: Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nat. Phys. 6, 912 (2010).
107.Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., and Wrachtrup, J.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249 (2010).
108.Neumann, P., Beck, J., Steiner, M., Rempp, F., Fedder, H., Hemmer, P.R., Wrachtrup, J., and Jelezko, F.: Single-shot readout of a single nuclear spin. Science 329, 542 (2010).
109.Dolde, F., Jakobi, I., Naydenov, B., Zhao, N., Pezzagna, S., Trautmann, C., Meijer, J., Neumann, P., Jelezko, F., and Wrachtrup, J.: Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139 (2013).
110.Giovannetti, V., Lloyd, S., and Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).
111.Giovannetti, V., Lloyd, S., and Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011).
112.Joo, J., Munro, W.J., and Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011).
113.Braun, D. and Martin, J.: Heisenberg-limited sensitivity with decoherence-enhanced measurements. Nat. Commun. 2, 223 (2011).
114.Thomas-Peter, N., Smith, B.J., Datta, A., Zhang, L.J., Dorner, U., and Walmsley, I.A.: Real-world quantum sensors: evaluating resources for precision measurement. Phys. Rev. Lett. 107, 113603 (2011).
115.Zwierz, M., Perez-Delgado, C.A., and Kok, P.: Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Phys. Rev. A 85, 042112 (2012).
116.Cappellaro, P., Goldstein, G., Hodges, J.S., Jiang, L., Maze, J.R., Sorensen, A.S., and Lukin, M.D.: Environment-assisted metrology with spin qubits. Phys. Rev. A 85, 032336 (2012).
117.Laraoui, A., Hodges, J.S., and Meriles, C.A.: Magnetometry of random ac magnetic fields using a single nitrogen-vacancy center. Appl. Phys. Lett. 97, 143104 (2010).
118.Acosta, V.M., Bauch, E., Jarmola, A., Zipp, L.J., Ledbetter, M.P., and Budker, D.: Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond. Appl. Phys. Lett. 97, 174104 (2010).
119.Pham, L.M., Le Sage, D., Stanwix, P.L., Yeung, T.K., Glenn, D., Trifonov, A., Cappellaro, P., Hemmer, P.R., Lukin, M.D., Park, H., Yacoby, A., and Walsworth, R.L.: Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 13, 045021 (2011).
120.Waldherr, G., Beck, J., Neumann, P., Said, R.S., Nitsche, M., Markham, M.L., Twitchen, D.J., Twamley, J., Jelezko, F., and Wrachtrup, J.: High-dynamic-range magnetometry with a single nuclear spin in diamond. Nat. Nanotechnol. 7, 105 (2012).
121.de Lange, G., Riste, D., Dobrovitski, V.V., and Hanson, R.: Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).
122.Schaffry, M., Gauger, E.M., Morton, J.J.L., and Benjamin, S.C.: Proposed spin amplification for magnetic sensors employing crystal defects. Phys. Rev. Lett. 107, 207210 (2011).
123.Hirose, M., Aiello, C.D., and Cappellaro, P.: Continuous dynamical decoupling magnetometry. Phys. Rev. A 86, 062320 (2012).
124.Rondin, L., Tetienne, J.P., Spinicelli, P., Dal Savio, C., Karrai, K., Dantelle, G., Thiaville, A., Rohart, S., Roch, J.F., and Jacques, V.: Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).
125.Shin, C.S., Avalos, C.E., Butler, M.C., Trease, D.R., Seltzer, S.J., Mustonen, J.P., Kennedy, D.J., Acosta, V.M., Budker, D., Pines, A., and Bajaj, V.S.: Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit. J. Appl. Phys. 112, 124519 (2012).
126.Fang, K.J., Acosta, V.M., Santori, C., Huang, Z.H., Itoh, K.M., Watanabe, H., Shikata, S., and Beausoleil, R.G.: High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. Phys. Rev. Lett. 110, 130802 (2013).
127.Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., and Yacoby, A.: A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320 (2012).
128.Cooper, A., Magesan, E., Yum, H.N., and Cappellaro, P.: Time-resolved magnetic sensing with electronic spins in diamond. Nat. Commun. 5, 3141 (2014).
129.Bouchard, L.S., Acosta, V.M., Bauch, E., and Budker, D.: Detection of the Meissner effect with a diamond magnetometer. New J. Phys. 13, 025017 (2011).
130.Waxman, A., Schlussel, Y., Groswasser, D., Acosta, V.M., Bouchard, L.S., Budker, D., and Folman, R.: Diamond magnetometry of superconducting thin films. Phys. Rev. B 89, 054509 (2014).
131.Tetienne, J.-P., Hingant, T., Kim, J.-V., Herrera Diez, L., Adam, J.-P., Garcia, K., Roch, J.-F., Rohart, S., Thiaville, A., Ravelosona, D., and Jacques, V.: Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366 (2014).
132.Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S., and Budker, D.: Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).
133.Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., and Lukin, M.D.: Nanometre-scale thermometry in a living cell. Nature 500, 54 (2013).
134.Toyli, D.M., de las Casas, C.F., Christle, D.J., Dobrovitski, V.V., and Awschalom, D.D.: Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. U. S. A. 110, 8417 (2013).
135.Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., and Wrachtrup, J.: High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738 (2013).
136.Dolde, F., Fedder, H., Doherty, M.W., Nobauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C.L., Jelezko, F., and Wrachtrup, J.: Electric-field sensing using single diamond spins. Nat. Phys. 7, 459 (2011).
137.Doherty, M.W., Struzhkin, V.V., Simpson, D.A., McGuinness, L.P., Meng, Y.F., Stacey, A., Karle, T.J., Hemley, R.J., Manson, N.B., Hollenberg, L.C.L., and Prawer, S.: Electronic properties and metrology applications of the diamond NV- center under pressure. Phys. Rev. Lett. 112, 047601 (2014).
138.Kolkowitz, S., Jayich, A.C.B., Unterreithmeier, Q.P., Bennett, S.D., Rabl, P., Harris, J.G.E., and Lukin, M.D.: Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603 (2012).
139.McGuinness, L.P., Yan, Y., Stacey, A., Simpson, D.A., Hall, L.T., Maclaurin, D., Prawer, S., Mulvaney, P., Wrachtrup, J., Caruso, F., Scholten, R.E., and Hollenberg, L.C.L.: Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358 (2011).
140.Igarashi, R., Yoshinari, Y., Yokota, H., Sugi, T., Sugihara, F., Ikeda, K., Sumiya, H., Tsuji, S., Mori, I., Tochio, H., Harada, Y., and Shirakawa, M.: Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett. 12, 5726 (2012).
141.Hall, L.T., Beart, G.C.G., Thomas, E.A., Simpson, D.A., McGuinness, L.P., Cole, J.H., Manton, J.H., Scholten, R.E., Jelezko, F., Wrachtrup, J., Petrou, S., and Hollenberg, L.C.L.: High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci Rep. 2, 401 (2012).
142.Collins, A.T., Davies, G., Kanda, H., and Woods, G.S.: Spectroscopic studies of C-13 synthetic diamond. J. Phys. C – Solid State Phys. 21, 1363 (1988).
143.Anthony, T.R., Banholzer, W.F., Fleischer, J.F., Wei, L.H., Kuo, P.K., Thomas, R.L., and Pryor, R.W.: Thermal-diffusivity of isotopically enriched C-12 diamond. Phys. Rev. B 42, 1104 (1990).
144.Yamaguchi, A., Yamashita, S., Tsutsumi, T., and Kawarada, H.: Temperature and incident beam-current dependence of dominant free-exciton recombination radiation from high-purity Chemical-Vapor-Deposition (Cvd) diamonds. Jpn. J. Appl. Phys. 2 – Lett. 33, L1063 (1994).
145.Watanabe, H., Nebel, C.E., and Shikata, S.: Isotopic homojunction band engineering from diamond. Science 324, 1425 (2009).
146.Watanabe, H. and Shikata, S.: Superlattice structures from diamond. Diam. Relat. Mater. 20, 980 (2011).
147.Watanabe, H., Koretsune, T., Nakashima, S., Saito, S., and Shikata, S.: Isotope composition dependence of the band-gap energy in diamond. Phys. Rev. B 88, 205420 (2013).
148.Mizuochi, N., Neumann, P., Rempp, F., Beck, J., Jacques, V., Siyushev, P., Nakamura, K., Twitchen, D.J., Watanabe, H., Yamasaki, S., Jelezko, F., and Wrachtrup, J.: Coherence of single spins coupled to a nuclear spin bath of varying density. Phys. Rev. B 80, 041201 (2009).
149.Ishikawa, T., Fu, K.M.C., Santori, C., Acosta, V.M., Beausoleil, R.G., Watanabe, H., Shikata, S., and Itoh, K.M.: Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. Nano Lett. 12, 2083 (2012).
150.Teraji, T., Taniguchi, T., Koizumi, S., Watanabe, K., Liao, M.Y., Koide, Y., and Isoya, J.: Chemical vapor deposition of C-12 isotopically enriched polycrystalline diamond. Jpn. J. Appl. Phys. 51, 090104 (2012).
151.Teraji, T., Taniguchi, T., Koizumi, S., Koide, Y., and Isoya, J.: Effective use of source gas for diamond growth with isotopic enrichment. Appl. Phys. Express 6, 055601 (2013).
152.Jahnke, K.D., Naydenov, B., Teraji, T., Koizumi, S., Umeda, T., Isoya, J., and Jelezko, F.: Long coherence time of spin qubits in C-12 enriched polycrystalline chemical vapor deposition diamond. Appl. Phys. Lett. 101, 012405 (2012).
153.Yamamoto, T., Umeda, T., Watanabe, K., Onoda, S., Markham, M.L., Twitchen, D.J., Naydenov, B., McGuinness, L.P., Teraji, T., Koizumi, S., Dolde, F., Fedder, H., Honert, J., Wrachtrup, J., Ohshima, T., Jelezko, F., and Isoya, J.: Extending spin coherence times of diamond qubits by high-temperature annealing. Phys. Rev. B 88, 075206 (2013).
154.Yamamoto, T., Muller, C., McGuinness, L.P., Teraji, T., Naydenov, B., Onoda, S., Ohshima, T., Wrachtrup, J., Jelezko, F., and Isoya, J.: Strongly coupled diamond spin qubits by molecular nitrogen implantation. Phys. Rev. B 88, 201201(R) (2013).
155.Rondin, L., Dantelle, G., Slablab, A., Grosshans, F., Treussart, F., Bergonzo, P., Perruchas, S., Gacoin, T., Chaigneau, M., Chang, H.C., Jacques, V., and Roch, J.F.: Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010).
156.Hauf, M.V., Grotz, B., Naydenov, B., Dankerl, M., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., and Garrido, J.A.: Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B 83, 081304 (2011).
157.Grotz, B., Hauf, M.V., Dankerl, M., Naydenov, B., Pezzagna, S., Meijer, J., Jelezko, F., Wrachtrup, J., Stutzmann, M., Reinhard, F., and Garrido, J.A.: Charge state manipulation of qubits in diamond. Nat. Commun. 3, 729 (2012).
158.Ohashi, K., Rosskopf, T., Watanabe, H., Loretz, M., Tao, Y., Hauert, R., Tomizawa, S., Ishikawa, T., Ishi-Hayase, J., Shikata, S., Degen, C.L., and Itoh, K.M.: Negatively charged nitrogen-vacancy centers in a 5 nm thin C-12 diamond film. Nano Lett. 13, 4733 (2013).
159.Ohno, K., Heremans, F.J., Bassett, L.C., Myers, B.A., Toyli, D.M., Jayich, A.C.B., Palmstrom, C.J., and Awschalom, D.D.: Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).
160.Orwa, J.O., Santori, C., Fu, K.M.C., Gibson, B., Simpson, D., Aharonovich, I., Stacey, A., Cimmino, A., Balog, P., Markham, M., Twitchen, D., Greentree, A.D., Beausoleil, R.G., and Prawer, S.: Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing. J. Appl. Phys. 109, 083530 (2011).
161.Maurer, P.C., Kucsko, G., Latta, C., Jiang, L., Yao, N.Y., Bennett, S.D., Pastawski, F., Hunger, D., Chisholm, N., Markham, M., Twitchen, D.J., Cirac, J.I., and Lukin, M.D.: Room-temperature quantum bit memory exceeding one second. Science 336, 1283 (2012).
162.Zhao, N., Honert, J., Schmid, B., Klas, M., Isoya, J., Markham, M., Twitchen, D., Jelezko, F., Liu, R.B., Fedder, H., and Wrachtrup, J.: Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657 (2012).
163.Mamin, H.J., Kim, M., Sherwood, M.H., Rettner, C.T., Ohno, K., Awschalom, D.D., and Rugar, D.: Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557 (2013).
164.Staudacher, T., Shi, F., Pezzagna, S., Meijer, J., Du, J., Meriles, C.A., Reinhard, F., and Wrachtrup, J.: Nuclear magnetic resonance spectroscopy on a (5-nanometer)(3) sample volume. Science 339, 561 (2013).
165.Loretz, M., Pezzagna, S., Meijer, J., and Degen, C.L.: Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014).
166.Grinolds, M.S., Maletinsky, P., Hong, S., Lukin, M.D., Walsworth, R.L., and Yacoby, A.: Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nat. Phys. 7, 687 (2011).
167.Rosskopf, T., Dussaux, A., Ohashi, K., Loretz, M., Schirhagl, R., Watanabe, H., Shikata, S., Itoh, K.M., and Degen, C.L.: Investigation of surface magnetic noise by shallow spins in diamond. Phys. Rev. Lett. 112, 147602 (2014).
168.Myers, B.A., Das, A., Dartiailh, M.C., Ohno, K., Awschalom, D.D., and Bleszynski Jayich, A.C.: Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).
169.Michl, J., Teraji, T., Zaiser, S., Jakobi, I., Waldherr, G., Dolde, F., Neumann, P., Doherty, M.W., Manson, N.B., Isoya, J., and Wrachtrup, J.: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl. Phys. Lett. 104, 102407 (2014).
170.Fukui, T., Doi, Y., Miyazaki, T., Miyamoto, Y., Kato, H., Matsumoto, T., Makino, T., Yamasaki, S., Morimoto, R., Tokuda, N., Hatano, M., Sakagawa, Y., Morishita, H., Tashima, T., Miwa, S., Suzuki, Y., and Mizuochi, N.: Perfect selective alignment of nitrogen-vacancy centers in diamond. Appl. Phys. Express 7, 055201 (2014).
171.Lesik, M., Tetienne, J.P., Tallaire, A., Achard, J., Mille, V., Gicquel, A., Roch, J.F., and Jacques, V.: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl. Phys. Lett. 104, 113107 (2014).
172.Rogers, L.J., Jahnke, K.D., Doherty, M.W., Dietrich, A., McGuinness, L.P., Muller, C., Teraji, T., Sumiya, H., Isoya, J., Manson, N.B., and Jelezko, F.: Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys. Rev. B 89, 235101 (2014).

Isotope engineering of silicon and diamond for quantum computing and sensing applications

  • Kohei M. Itoh (a1) and Hideyuki Watanabe (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed