Skip to main content Accessibility help
×
Home

Intrinsically low-resistance carbon nanotube-metal contacts mediated by topological defects

  • Han Seul Kim (a1), Ga In Lee (a2), Hu Sung Kim (a1), Jeung Ku Kang (a3) and Yong-Hoon Kim (a4)...

Abstract

Applying a first-principles computational approach, we study the electronic and charge transport properties of the interfaces between metals and capped carbon nanotubes (CNTs) with various arrangements of topological defects. Observing the length scaling of resistance, we first show that capped CNTs exhibit only one CNT-body-determined low-slope scaling and the resulting very low long-length-limit resistance. The intrinsically low resistance (absence of Schottky-barrier-dominated high-slope scaling) of capped CNTs is next analyzed by the local density of states, which shows the formation of unusual propagating-type metal-induced gap states originating from the topological defect states that are well connected with CNT edge and body states.

Copyright

Corresponding author

Address all correspondence to Yong-Hoon Kim and Jeung Ku Kang aty.h.kim@kaist.ac.kr and jeungku@kaist.ac.kr

References

Hide All
1.Tans, S.J., Verschueren, A.R.M., and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).
2.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).
3.Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424, 654 (2003).
4.Franklin, A.D. and Chen, Z.: Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858 (2010).
5.Svensson, J. and Campbell, E.E.B.: Schottky barriers in carbon nanotube-metal contacts. J. Appl. Phys. 110, 111101 (2011).
6.Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P.: Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).
7.Vitale, V., Curioni, A., and Andreoni, W.: Metal-carbon nanotube contacts: The link between Schottky barrier and chemical bonding. J. Am. Chem. Soc. 130, 5848 (2008).
8.Zhang, Y., Franklin, N., Chen, R., and Dai, H.: Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 331, 35 2000).
9.Kim, Y.-H. and Byun, Y.M.: Diameter dependence of charge transport across carbon nanotube-metal contacts from first principles. J. Kor. Phys. Soc. 55, 299 (2009).
10.Kim, Y.-H. and Kim, H.S.: Anomolous length scaling of carbon nanotube-metal contact resistance: An ab initio study. Appl. Phys. Lett. 100, 213113 (2012).
11.Brinkmann, G., Fowler, P.W., Manolopoulos, D.E., and Palser, A.H.R.: A census of nanotube caps. Chem. Phys. Lett. 315, 335 (1999).
12.Reich, S., Li, L., and Robertson, J.: Structure and formation energy of carbon nanotube caps. Phys. Rev. B 72, 165423 (2005).
13.Khazaei, M., Dean, K.A., Farajian, A.A., and Kawazoe, Y.: Field emission signature of pentagons at carbon nanotube caps. J. Phys. Chem. C 111, 6690 (2007).
14.Palacios, J.J., Tarakeshwar, P., and Kim, D.M.: Metal contacts in carbon nanotube field effect transistors: Beyond the Schottky barrier paradigm. Phys. Rev. B 77, 113403 (2008).
15.Adessi, C., Avriller, R., Blase, X., Bournel, A., d'Honincthun, H.C., Dollfus, P., Fregonese, S., Galdin-Retailleau, S., Lopez-Bezanilla, A., Maneux, C., Nguyen, H.N., Querlioz, D., Roche, S., Triozon, F., and Zimmer, T.: Multiscale simulation of carbon nanotube devices. C. R. Physique 10, 305 (2009).
16.Mann, D., Javey, A., Kong, J., Wang, Q., and Dai, H.J.: Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541 (2003).
17.Nosho, Y., Ohno, Y., Kishimoto, S., and Mizutani, T.: Evidence of edge conduction at nanotube/metal contact in carbon nanotube devices. Jpn. J. Appl. Phys. 46, L474 (2007).
18.Kim, Y.-H., Tahir-Kheli, J., Schultz, P.A., and Goddard, W.A. III: First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices. Phys. Rev. B 73, 235419 (2006).
19.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
20.SeqQuest Project (ver. 2.4), Sandia National Laboratories (http://dft.sandia.gov/Quest).
21.Datta, S.: Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, England, 2005).
22.Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).
23.Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).
24.Kawai, T., Miyamoto, Y., Sugino, O., and Koga, Y.: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B 62, R16349 (2000).
25.Lee, G.I., Kang, J.K., and Kim, Y.-H.: Metal-Independent coherent electron tunneling through polymerized fullerene chains. J. Phys. Chem. C 112, 7029 (2008).
Type Description Title
WORD
Supplementary materials

Kim et al. supplementary material
Supplementary data

 Word (822 KB)
822 KB

Intrinsically low-resistance carbon nanotube-metal contacts mediated by topological defects

  • Han Seul Kim (a1), Ga In Lee (a2), Hu Sung Kim (a1), Jeung Ku Kang (a3) and Yong-Hoon Kim (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed