Skip to main content Accessibility help

The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules

  • Caroline Grand (a1) and John R. Reynolds (a1)


The design of π-conjugated molecules and polymers has driven the increase in efficiency of bulk heterojunction organic photovoltaic devices from <1% to over 12%. The pathways to generation of free charge carriers are still being uncovered. By focusing on blends of conjugated polymers with fullerenes, recent work has highlighted the impact of the design of donor–acceptor polymers on optoelectronic properties and phase-separated morphologies. This morphology of the active layer is largely controlled by processing conditions, such as use of processing additives. Developing a deep understanding of the impact of polymer chemistry and processing at the laboratory scale is key to translating the technology of organic photovoltaics from the research scale to large-area modules.


Corresponding author

Address all correspondence John R. Reynolds


Hide All
1.Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 44). Prog. Photovolt: Res. Appl. 22, 701 (2014).
2.Darling, S.B. and You, F.: The case for organic photovoltaics. RSC Adv. 3, 17633 (2013).
3.Mazzio, K.A. and Luscombe, C.K.: The future of organic photovoltaics. Chem. Soc. Rev. 44, 78 (2015).
4.Mulligan, C.J., Bilen, C., Zhou, X., Belcher, W.J., and Dastoor, P.C.: Levelised cost of electricity for organic photovoltaics. Sol. Energy Mater. Sol. Cells 133, 26 (2015).
5.US Energy Information Administration: Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook. 2014.
6.Reinhard, P., Chirila, A., Blosch, P., Pianezzi, F., Nishiwaki, S., Buechelers, S., and Tiwari, A.N.: Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE J. Photovolt. 3, 572 (2013).
7.Powalla, M., Witte, W., Jackson, P., Paetel, S., Lotter, E., Wuerz, R., Kessler, F., Tschamber, C., Hempel, W., Hariskos, D., Menner, R., Bauer, A., Spiering, S., Ahlswede, E., Friedlmeier, T.M., Blazquez-Sanchez, D., Klugius, I., and Wischmann, W.: CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J. Photovolt. 4, 440 (2014).
8.Pethuraja, G.G., Welser, R.E., and Sood, A.K.: Roll-to-roll solution process method for fabricating CIGS solar cells and system for the same. U.S. Patent No. 8,865,506, October 21, (2014).
9.Amb, C.M., Craig, M.R., Koldemir, U., Subbiah, J., Choudhury, K.R., Gevorgyan, S.A., Jørgensen, M., Krebs, F.C., So, F., and Reynolds, J.R.: Aesthetically pleasing conjugated polymer:fullerene blends for blue-green solar cells via roll-to-roll processing. ACS Appl. Mater. Interfaces 4, 1847 (2012).
10.Krebs, F.C., Nielsen, T.D., Fyenbo, J., Wadstrom, M., and Pedersen, M.S.: Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energy Environ. Sci. 3, 512 (2010).
11.Chueh, C.-C., Chien, S.-C., Yip, H.-L., Salinas, J.F., Li, C.-Z., Chen, K.-S., Chen, F.-C., Chen, W.-C., and Jen, A.K.Y.: Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture. Adv. Energy Mater. 3, 417 (2013).
12.Beiley, Z.M., Christoforo, M.G., Gratia, P., Bowring, A.R., Eberspacher, P., Margulis, G.Y., Cabanetos, C., Beaujuge, P.M., Salleo, A., and McGehee, M.D.: Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics. Adv. Mater. 25, 7020 (2013).
13.Dou, L., Chang, W.-H., Gao, J., Chen, C.-C., You, J., and Yang, Y.: A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv. Mater. 25, 825 (2013).
14.International Energy Agency: Technology Roadmap: Solar Photovoltaic Energy (2010).
15.Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).
16.Morel, D.L., Ghosh, A.K., Feng, T., Stogryn, E.L., Purwin, P.E., Shaw, R.F., and Fishman, C.: High-efficiency organic solar cells. Appl. Phys. Lett. 32, 495 (1978).
17.Ghosh, A.K. and Feng, T.: Merocyanine organic solar cells. J. Appl. Phys. 49, 5982 (1978).
18.Service, R.F.: Outlook brightens for plastic solar cells. Science 332, 293 (2011).
19.Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12%.
20.Amb, C.M., Chen, S., Graham, K.R., Subbiah, J., Small, C.E., So, F., and Reynolds, J.R.: Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Chem. Soc. 133, 10062 (2011).
21.Small, C.E., Chen, S., Subbiah, J., Amb, C.M., Tsang, S.-W., Lai, T.-H., Reynolds, J.R., and So, F.: High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 6, 115 (2012).
22.Coughlin, J.E., Henson, Z.B., Welch, G.C., and Bazan, G.C.: Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc. Chem. Res. 47, 257 (2013).
23.Kippelen, B. and Bredas, J.-L.: Organic photovoltaics. Energy Environ. Sci. 2, 251 (2009).
24.Askat, E.J., Adam, P.W., John, R.T., Wai-Lun, C., Na, S., Raluca, G., Loren, G.K., Kenrick, J.W., Kevin, L., Peter, J.R., and Zhu, X.Y.: Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66 (2012).
25.Grancini, G., Maiuri, M., Fazzi, D., Petrozza, A., Egelhaaf, H.J., Brida, D., Cerullo, G., and Lanzani, G.: Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29 (2013).
26.Vithanage, D.A., Devižis, A., Abramavičius, V., Infahsaeng, Y., Abramavičius, D., MacKenzie, R.C.I., Keivanidis, P.E., Yartsev, A., Hertel, D., Nelson, J., Sundström, V., and Gulbinas, V.: Visualizing charge separation in bulk heterojunction organic solar cells. Nat. Commun. 4, 2334 (2013).
27.Gélinas, S., Rao, A., Kumar, A., Smith, S.L., Chin, A.W., Clark, J., van der Poll, T.S., Bazan, G.C., and Friend, R.H.: Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512 (2014).
28.Vandewal, K., Albrecht, S., Hoke, E.T., Graham, K.R., Widmer, J., Douglas, J.D., Schubert, M., Mateker, W.R., Bloking, J.T., Burkhard, G.F., Sellinger, A., Fréchet, J.M.J., Amassian, A., Riede, M.K., McGehee, M.D., Neher, D., and Salleo, A.: Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63 (2014).
29.Bredas, J.-L.: When electrons leave holes in organic solar cells. Science 343, 492 (2014).
30.Li, W. and You, W.: Donor-acceptor alternating copolymers. In Conjugated Polymers: A Practical Guide to Synthesis, edited by Müllen, K., Reynolds, J.R., and Masuda, T. (The Royal Society of Chemistry, 2014) 319342.
31.Mei, J. and Bao, Z.: Side chain engineering in solution-processible conjugated polymers for organic solar cells and field-effect transistors. Chem. Mater. 26, 604 (2014).
32.Parker, T.C., Patel, D.G., Moudgil, K., Barlow, S., Risko, C., Bredas, J.-L., Reynolds, J.R., and Marder, S.R.: Heteroannulated acceptors based on benzothiadiazole. Mater. Horiz. 2, 22 (2015).
33.Robb, M.J., Ku, S.-Y., Brunetti, F.G., and Hawker, C.J.: A renaissance of color: new structures and building blocks for organic electronics. J. Polym. Sci., A: Polym. Chem. 51, 1263 (2013).
34.Liu, Z., Zhang, G., Cai, Z., Chen, X., Luo, H., Li, Y., Wang, J., and Zhang, D.: New organic semiconductors with imide/amide-containing molecular systems. Adv. Mater. 26, 6965 (2014).
35.Guo, X., Facchetti, A., and Marks, T.J.: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943 (2014).
36.Zhou, H., Yang, L., Stuart, A.C., Price, S.C., Liu, S., and You, W.: Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995 (2011).
37.Son, H.J., Wang, W., Xu, T., Liang, Y., Wu, Y., Li, G., and Yu, L.: Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133, 1885 (2011).
38.Scherf, U.: Conjugated ladder-type structures. In Handbook of Conjugated Polymers, edited by Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (CRC Press, Boca Raton, 1998), 363379.
39.Babel, A. and Jenekhe, S.A.: High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656 (2003).
40.Steckler, T.T., Zhang, X., Hwang, J., Honeyager, R., Ohira, S., Zhang, X.-H., Grant, A., Ellinger, S., Odom, S.A., Sweat, D., Tanner, D.B., Rinzler, A.G., Barlow, S., Brédas, J.-L., Kippelen, B., Marder, S.R., and Reynolds:, J.R.A spray-processable, low bandgap, and ambipolar donor−acceptor conjugated polymer. J. Am. Chem. Soc. 131, 2824 (2009).
41.van Mullekom, H.A.M., Vekemans, J.A.J.M., Havinga, E.E., and Meijer, E.W.: Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater. Sci. Eng. R: Rep. 32, 1 (2001).
42.Burke, T.M. and McGehee, M.D.: How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv. Mater. 26, 1923 (2014).
43.Sweetnam, S., Graham, K.R., Ngongang Ndjawa, G.O., Heumüller, T., Bartelt, J.A., Burke, T.M., Li, W., You, W., Amassian, A., and McGehee, M.D.: Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 14078 (2014).
44.Richter, L.J., DeLongchamp, D.M., Bokel, F.A., Engmann, S., Chou, K.W., Amassian, A., Schaible, E., and Hexemer, A.: In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5 (2015).
45.Abdelsamie, M., Zhao, K., Niazi, M.R., Chou, K.W., and Amassian, A.: In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. J. Mater. Chem. C 2, 3373 (2014).
46.Rivnay, J., Mannsfeld, S.C.B., Miller, C.E., Salleo, A., and Toney, M.F.: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).
47.Kline, R.J.: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312 (2005).
48.Guilbert, A.A.Y., Frost, J.M., Agostinelli, T., Pires, E., Lilliu, S., Macdonald, J.E., and Nelson, J.: Influence of bridging atom and side chains on the structure and crystallinity of cyclopentadithiophene–benzothiadiazole polymers. Chem. Mater. 26, 1226 (2013).
49.Park, J.K., Jo, J., Seo, J.H., Moon, J.S., Park, Y.D., Lee, K., Heeger, A.J., and Bazan, G.C.: End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar cells. Adv. Mater. 23, 2430 (2011).
50.Kouijzer, S., Michels, J.J., van den Berg, M., Gevaerts, V.S., Turbiez, M., Wienk, M.M., and Janssen, R.A.J.: Predicting morphologies of solution processed polymer:fullerene blends. J. Am. Chem. Soc. 135, 12057 (2013).
51.Beaujuge, P.M., Tsao, H.N., Hansen, M.R., Amb, C.M., Risko, C., Subbiah, J., Choudhury, K.R., Mavrinskiy, A., Pisula, W., Brédas, J.-L., So, F., Müllen, K., and Reynolds, J.R.: Synthetic principles directing charge transport in low-band-gap dithienosilole–benzothiadiazole copolymers. J. Am. Chem. Soc. 134, 8944 (2012).
52.Wang, S., Kappl, M., Liebewirth, I., Müller, M., Kirchhoff, K., Pisula, W., and Müllen, K.: Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24, 417 (2012).
53.Lei, T., Cao, Y., Zhou, X., Peng, Y., Bian, J., and Pei, J.: Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 24, 1762 (2012).
54.Graham, K.R., Cabanetos, C., Jahnke, J.P., Idso, M.N., El Labban, A., Ngongang Ndjawa, G.O., Heumueller, T., Vandewal, K., Salleo, A., Chmelka, B.F., Amassian, A., Beaujuge, P.M., and McGehee, M.D.: Importance of the donor : fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 136, 9608 (2014).
55.Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., and Müllen, K.: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605 (2011).
56.Shin, N., Richter, L.J., Herzing, A.A., Kline, R.J., and DeLongchamp, D.M.: Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 3, 938 (2013).
57.Perez, L.A., Chou, K.W., Love, J.A., van der Poll, T.S., Smilgies, D.-M., Nguyen, T.-Q., Kramer, E.J., Amassian, A., and Bazan, G.C.: Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25, 6380 (2013).
58.Chou, K.W., Yan, B., Li, R., Li, E.Q., Zhao, K., Anjum, D.H., Alvarez, S., Gassaway, R., Biocca, A., Thoroddsen, S.T., Hexemer, A., and Amassian, A.: Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mater. 25, 1923 (2013).
59.Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., and Bazan, G.C.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497 (2007).
60.Peet, J., Cho, N.S., Lee, S.K., and Bazan, G.C.: Transition from solution to the solid state in polymer solar cells cast from mixed solvents. Macromolecules 41, 8655 (2008).
61.Huang, Y., Kramer, E.J., Heeger, A.J., and Bazan, G.C.: Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114, 7006 (2014).
62.Yao, Y., Hou, J., Xu, Z., Li, G., and Yang, Y.: Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv. Funct. Mater. 18, 1783 (2008).
63.Rogers, J.T., Schmidt, K., Toney, M.F., Bazan, G.C., and Kramer, E.J.: Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc. 134, 2884 (2012).
64.Schmidt, K., Tassone, C.J., Niskala, J.R., Yiu, A.T., Lee, O.P., Weiss, T.M., Wang, C., Fréchet, J.M.J., Beaujuge, P.M., and Toney, M.F.: A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells. Adv. Mater. 26, 300 (2014).
65.Lou, S.J., Szarko, J.M., Xu, T., Yu, L., Marks, T.J., and Chen, L.X.: Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. J. Am. Chem. Soc. 133, 20661 (2011).
66.Gao, J., Chen, W., Dou, L., Chen, C.-C., Chang, W.-H., Liu, Y., Li, G., and Yang, Y.: Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells. Adv. Mater. 26, 3142 (2014).
67.Yan, H., Zhu, L., Li, D., Zhang, Y., Yi, Y., Yang, Y., Wei, Z., and Brédas, J.-L.: Rationalization of the selectivity in the optimization of processing conditions for high-performance polymer solar cells based on the polymer self-assembly ability. J. Phys. Chem. C 118, 29473 (2014).
68.Dang, M.T., Hirsch, L., and Wantz, G.: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597 (2011).
69.Hendriks, K.H., Li, W., Heintges, G.H.L., van Pruissen, G.W.P., Wienk, M.M., and Janssen, R.A.J.: Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J. Am. Chem. Soc. 136, 11128 (2014).
70.Zimmermann, E., Ehrenreich, P., Pfadler, T., Dorman, J.A., Weickert, J., and Schmidt-Mende, L.: Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669 (2014).
71.Luber, E.J. and Buriak, J.M.: Reporting performance in organic photovoltaic devices. ACS Nano 7, 4708 (2013).
72.Krebs, F.C., Gevorgyan, S.A., and Alstrup, J.: A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442 (2009).
73.Machui, F., Lucera, L., Spyropoulos, G.D., Cordero, J., Ali, A.S., Kubis, P., Ameri, T., Voigt, M.M., and Brabec, C.J.: Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations. Sol. Energy Mater. Sol. Cells 128, 441 (2014).
74.Teichler, A., Eckardt, R., Hoeppener, S., Friebe, C., Perelaer, J., Senes, A., Morana, M., Brabec, C.J., and Schubert, U.S.: Combinatorial screening of polymer:fullerene blends for organic solar cells by inkjet printing. Adv. Energy Mater. 1, 105 (2011).
75.Arias, A.C., MacKenzie, J.D., McCulloch, I., Rivnay, J., and Salleo, A.: Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3 (2010).
76.Jin, H., Tao, C., Velusamy, M., Aljada, M., Zhang, Y., Hambsch, M., Burn, P.L., and Meredith, P.: Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 24, 2572 (2012).
77.Xiong, K., Hou, L., Wu, M., Huo, Y., Mo, W., Yuan, Y., Sun, S., Xu, W., and Wang, E.: From spin coating to doctor blading: a systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol. Energy Mater. Sol. Cells 132, 252 (2015).
78.Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., Becerril, H.A., Aspuru-Guzik, A., Toney, M.F., and Bao, Z.: Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504 (2011).
79.Yao, Y., Dong, H., and Hu, W.: Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197 (2013).
80.Lim, S.-L., Chen, E.-C., Chen, C.-Y., Ong, K.-H., Chen, Z.-K., and Meng, H.-F.: High performance organic photovoltaic cells with blade-coated active layers. Sol. Energy Mater. Sol. Cells 107, 292 (2012).
81.Søndergaard, R., Manceau, M., Jørgensen, M., and Krebs, F.C.: New low-bandgap materials with good stabilities and efficiencies comparable to P3HT in R2R-coated solar cells. Adv. Energ. Mater. 2, 415 (2012).
82.Abdellah, A., Virdi, K.S., Meier, R., Döblinger, M., Müller-Buschbaum, P., Scheu, C., Lugli, P., and Scarpa, G.: Successive spray deposition of P3HT/PCBM organic photoactive layers: material composition and device characteristics. Adv. Funct. Mater. 22, 4078 (2012).
83.Patel, D.G., Graham, K.R., and Reynolds, J.R.: A Diels-Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. J. Mater. Chem. 22, 3004 (2012).
84.Li, N., Kubis, P., Forberich, K., Ameri, T., Krebs, F.C., and Brabec, C.J.: Towards large-scale production of solution-processed organic tandem modules based on ternary composites: design of the intermediate layer, device optimization and laser based module processing. Sol. Energy Mater. Sol. Cells 120, 701 (2014).
85.Andersen, T.R., Dam, H.F., Hosel, M., Helgesen, M., Carle, J.E., Larsen-Olsen, T.T., Gevorgyan, S.A., Andreasen, J.W., Adams, J., Li, N., Machui, F., Spyropoulos, G.D., Ameri, T., Lemaitre, N., Legros, M., Scheel, A., Gaiser, D., Kreul, K., Berny, S., Lozman, O.R., Nordman, S., Valimaki, M., Vilkman, M., Sondergaard, R.R., Jorgensen, M., Brabec, C.J., and Krebs, F.C.: Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ. Sci. 7, 2925 (2014).
86.Spyropoulos, G.D., Kubis, P., Li, N., Baran, D., Lucera, L., Salvador, M., Ameri, T., Voigt, M.M., Krebs, F.C., and Brabec, C.J.: Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284 (2014).
87.Lin, Y. and Zhan, X.: Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Mater. Horiz. 1, 470 (2014).
88.Pho, T.V., Toma, F.M., Tremolet de Villers, B.J., Wang, S., Treat, N.D., Eisenmenger, N.D., Su, G.M., Coffin, R.C., Douglas, J.D., Fréchet, J.M.J., Bazan, G.C., Wudl, F., and Chabinyc, M.L.: Decacyclene triimides: paving the road to universal non-fullerene acceptors for organic photovoltaics. Adv. Energy Mater. 4, (2014).
89.Liu, T. and Troisi, A.: What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv. Mater 25, 1038 (2013).
90.Li, H., Earmme, T., Ren, G., Saeki, A., Yoshikawa, S., Murari, N.M., Subramaniyan, S., Crane, M.J., Seki, S., and Jenekhe, S.A.: Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics. J. Am. Chem. Soc. 136, 14589 (2014).
91.Bloking, J.T., Giovenzana, T., Higgs, A.T., Ponec, A.J., Hoke, E.T., Vandewal, K., Ko, S., Bao, Z., Sellinger, A., and McGehee, M.D.: Comparing the device physics and morphology of polymer solar cells employing fullerenes and non-fullerene acceptors. Adv. Energy Mater. 4, (2014).
92.Bakulin, A.A., Rao, A., Pavelyev, V.G., van Loosdrecht, P.H.M., Pshenichnikov, M.S., Niedzialek, D., Cornil, J., Beljonne, D., and Friend, R.H.: The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340 (2012).
93.Earmme, T., Hwang, Y.-J., Murari, N.M., Subramaniyan, S., and Jenekhe, S.A.: All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J. Am. Chem. Soc. 135, 14960 (2013).
94.Mori, D., Benten, H., Ohkita, H., Ito, S., and Miyake, K.: Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl. Mater. Interfaces 4, 3325 (2012).
95.Earmme, T., Hwang, Y.-J., Subramaniyan, S., and Jenekhe, S.A.: All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Adv. Mater. 26, 6080 (2014).
96.Zhou, E., Cong, J., Hashimoto, K., and Tajima, K.: Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv. Mater. 25, 6991 (2013).
97.Li, W., Roelofs, W.S.C., Turbiez, M., Wienk, M.M., and Janssen, R.A.J.: Polymer solar cells with diketopyrrolopyrrole conjugated polymers as the electron donor and electron acceptor. Adv. Mater. 26, 3304 (2014).
98.Pavlopoulou, E., Kim, C.S., Lee, S.S., Chen, Z., Facchetti, A., Toney, M.F., and Loo, Y.-L.: Tuning the morphology of all-polymer OPVs through altering polymer–solvent interactions. Chem. Mater. 26, 5020 (2014).
99.Robb, M.J., Ku, S.-Y., and Hawker, C.J.: 25th anniversary article: no assembly required: recent advances in fully conjugated block copolymers. Adv. Mater. 25, 5686 (2013).
100.Lucera, L., Kubis, P., Fecher, F. W., Bronnbauer, C., Turbiez, M., Forberich, K., Ameri, T., Egelhaaf, H.-J., and Brabec, C.J.: Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules. Energy Technol. 3, 373 (2015).
101.Angmo, D., Sommeling, P.M., Gupta, R., Hösel, M., Gevorgyan, S.A., Kroon, J.M., Kulkarni, G.U., and Krebs, F.C.: Outdoor operational stability of indium-free flexible polymer solar modules over 1 year studied in India, Holland, and Denmark. Adv. Eng. Mater. 16, 976 (2014).
102.Sachs-Quintana, I.T., Heumüller, T., Mateker, W.R., Orozco, D.E., Cheacharoen, R., Sweetnam, S., Brabec, C.J., and McGehee, M.D.: Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv. Funct. Mater. 24, 3978 (2014).
103.Vosgueritchian, M., Lipomi, D.J., and Bao, Z.: Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421 (2012).
104.Puodziukynaite, E., Wang, H.-W., Lawrence, J., Wise, A.J., Russell, T.P., Barnes, M.D., and Emrick, T.: Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. J. Am. Chem. Soc. 136, 11043 (2014).
105.Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T.M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J.-L., Marder, S.R., Kahn, A., and Kippelen, B.: A Universal method to produce low–work function electrodes for organic electronics. Science 336, 327 (2012).
106.Imec Demonstrates Organic Photovoltaics Modules Showing Excellent Optical Properties and High Efficiencies.

Related content

Powered by UNSILO

The interplay between structure, processing, and properties in organic photovoltaic devices: how to translate recent laboratory-scale developments to modules

  • Caroline Grand (a1) and John R. Reynolds (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.