Skip to main content Accessibility help

In-silico screening of Pt-based bimetallic alloy catalysts using ab initio microkinetic modeling for non-oxidative dehydrogenation of ethanol to produce acetaldehyde

  • Fatima Jalid (a1) (a2), Tuhin S. Khan (a1) and M. Ali Haider (a1)


Ab initio microkinetic modeling was performed to study ethanol conversion to acetaldehyde on Pt-based bimetallic alloys in a non-oxidative environment. Alloying Pt with Au, Ag, Cu, Co, Ni, Zn, Cd, Al, Ga, In, Tl, Ge, Sn, Pb, As, and Sb showed an increase in product turnover by at least an order of magnitude compared with Pt at 423 K. This was correlated to the increased stabilization of CH3CHO species over these alloys. Among the alloy candidates; Pt3Cu, Pt3Zn, Pt3Ga, Pt3Ge, Pt3Sb, and Pt3Pb were found to be more active than Pt.


Corresponding author

Address all correspondence to Tuhin S. Khan and M. Ali Haider at and


Hide All

Equal first author contribution.



Hide All
1.Shan, J., Janvelyan, N., Li, H., Liu, J., Egle, T.M., Ye, J., Biener, M.M., Biener, J., Friend, C.M. and Flytzani-Stephanopoulos, M.: Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute Nicu alloys. Appl. Catal. B Environ. 205, 541550 (2017).
2.Church, J.M. and Joshi, H.K.: Acetaldehyde by dehydrogenation of ethyl alcohol. Ind. Eng. Chem. 43, 18041811 (1951).
3.Shan, J., Lucci, F.R., Liu, J., El-Soda, M., Marcinkowski, M.D., Allard, L.F., Sykes, E.C.H. and Flytzani-Stephanopoulos, M.: Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen. Surf. Sci. 650, 121129 (2016).
4.Wang, Z.T., Hoyt, R.A., El-Soda, M., Madix, R.J., Kaxiras, E. and Sykes, E.C.H.: Dry dehydrogenation of ethanol on Pt–Cu single atom alloys. Top. Catal. 61, 328335 (2018).
5.Kon, K., Hakim Siddiki, S.M.A. and Shimizu, K.I.: Size- and support-dependent Pt nanocluster catalysis for oxidant-free dehydrogenation of alcohols. J. Catal. 2013, 304, 6371 (2013).
6.Moromi, S.K., Hakim Siddiki, S.M.A., Ali, M.A., Kon, K. and Shimizu, K.: Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts. Catal. Sci. Technol. 4, 36313635 (2014).
7.Reddy, G.K. and Rao, P.K.: Vapour phase dehydrogenation of cyclohexanol over alumina-supported Pt-co bimetallic catalysts. Catal. Lett. 45, 9396 (1997).
8.Lausche, A.C., Hummelshoj, J.S., Abild-Pedersen, F., Studt, F. and Norskov, J.K.: Application of a new informatics tool in heterogeneous catalysis: analysis of methanol dehydrogenation on transition metal catalysts for the production of anhydrous formaldehyde. J. Catal. 291, 133137 (2012).
9.Khan, T. S., Jalid, F., and Haider, M. A.: First-principle microkinetic modeling of ethanol dehydrogenation on metal catalyst surfaces in non-oxidative environment: design of bimetallic alloys. Top. Catal. 61, 18201831 (2018).
10.De Cola, P.L., Gläser, R. and Weitkamp, J.: Non-oxidative propane dehydrogenation over Pt-Zn-containing zeolites. Appl. Catal. A Gen. 306, 8597 (2006).
11.Ma, Z., Wu, Z. and Miller, J.T.: Effect of Cu content on the Bimetallic Pt–Cu catalysts for propane dehydrogenation. Catal. Struct. React. 3, 4353 (2017).
12.Cortright, R.D. and Dumesic, J.A.: Microcalorimetric, spectroscopic, and kinetic studies of silica supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J. Catal. 148, 771778 (1994).
13.Medford, A.J., Shi, C., Hoffmann, M.J., Lausche, C., Fitzgibbon, S.R., Bligaard, T. and Nørskov, J.K.: CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Lett. 145, 794807 (2015).
14.Studt, F., Abild-pedersen, F., Wu, Q., Jensen, A.D., Temel, B., Grunwaldt, D. and Nørskov, J.K.: CO hydrogenation to methanol on Cu – Ni catalysts: theory and experiment. J. Catal. 293, 5160 (2012).
15.Xu, Y., Lausche, A.C., Wang, S., Khan, T.S., Abild-Pedersen, F., Studt, F., Nørskov, J.K. and Bligaard, T.: In silico search for novel methane steam reforming catalysts. New J. Phys. 15, 125021 (2013).
16.Jalid, F., Khan, T.S., Mir, F.Q. and Haider, M.A.: Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface. J. Catal. 353, 265273 (2017).
17.Khan, T.S., Hussain, S., Anjum, U. and Haider, M.A.: In-silico screening of metal and bimetallic alloy catalysts for sofc anode at high, intermediate and low temperature operations. Electrochim. Acta 281, 654664 (2018).
18.Silvestre-Albero, J., Serrano-Ruiz, J.C., Sepúlveda-Escribano, A. and Rodríguez-Reinoso, F.: Modification of the catalytic behaviour of platinum by zinc in crotonaldehyde hydrogenation and iso-butane dehydrogenation. Appl. Catal. A Gen. 292, 244251 (2005).
19.Cai, W., Mu, R., Zha, S., Sun, G., Chen, S., Zhao, Z., Li, H., Tian, H., Tang, Y., Tao, F., Zeng, L. and Gong, J.: Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4, 19 (2018).
20.Wegener, E.C., Wu, Z., Tseng, H., Gallagher, J.R., Ren, Y., Diaz, R.E., Ribeiro, F.H. and Miller, J.T.: Structure and reactivity of Pt–In intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation. Catal. Today 299, 146153 (2018).
21.Alcalá, R., Shabaker, J. W., Huber, G. W., Sanchez-Castillo, M. A. and Dumesic, J. A.: Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. J. Phys. Chem. B. 109, 20742085 (2015).
22.Paz, R.R.: A DFT study of the adsorption and dehydrogenation of ethanol on a specific Pt-Sn catalyst. ECS Trans. 77, 16251641 (2017).
23.Bariås, O.A., Holmen, A. and Blekkan, E. A.: Propane dehydrogenation over supported Pt and Pt-Sn catyalysts: catalyst preparation, characterization, and activity measurements. J. Catal. 158, 112 (1996
24.Hauser, A.W., Horn, P.R., Head-gordon, M. and Bell, A.T.: A systematic study on Pt-based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction. Phys. Chem. Chem. Phys. 18, 1090610917 (2016).
25.Wang, C., Garbarino, G., Allard, L.F., Wilson, F., Busca, G. and Flytzani-stephanopoulos, M.: Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx. ACS Catal. 6, 210218 (2016).
26.Saravanan, G., Khobragade, R., Nagar, L.C. and Labhsetwar, N.: Ordered intermetallic Pt – Cu nanoparticles for the catalytic CO oxidation reaction. RSC Adv. 6, 8563485642 (2016).
27.Sattler, J.J.H.B., Gonzalez-Jimenez, I.D., Luo, L., Stears, B.A., Malek, A., Barton, D.G., Kilos, B.A., Kaminsky, M.P., Verhoeven, T.W.G.M., Koers, E.J., Baldus, M. and Weckhuysen, B.M.: Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew. Chem. Int. Ed. 53, 92519256 (2014).
28.Zhu, J., Zheng, X., Wang, J., Wu, Z., Han, L., Lin, R., Xin, H.L. and Wang, D.: Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A. 3, 2212922135 (2015).
29.Huang, Z., Fryer, J.R., Park, C., Stirling, D. and Webb, G.: Transmission electron microscopy, energy dispersive x-ray spectroscopy, and chemisorption studies of Pt–Ge/ γ-Al2O3 reforming catalysts. J. Catal. 175, 226235 (1998).
30.Stegelmann, C., Andreasen, A. and Campbell, C.T.: Degree of rate control: how much the energies of intermediate and transition states control rates. J. Am. Chem. Soc. 131, 80778082 (2009).
Type Description Title
Supplementary materials

Jalid et al. supplementary material
Jalid et al. supplementary material 1

 PDF (4.7 MB)
4.7 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed