Skip to main content Accessibility help
×
Home

Influence of the injection temperature on the size of Ni–Pt polyhedral nanoparticles synthesized by the hot-injection method

  • J.L. Reyes-Rodríguez (a1), A. Velázquez-Osorio (a1), O. Solorza-Feria (a1), D. Bahena-Uribe (a2) and J. Roque (a2)...

Abstract

Ni–Pt polyhedral nanoparticles were synthesized through a thermochemical route by the hot-injection method using Oleylamine (Oam) and Oleic acid (Oac) solvents as simultaneous stabilizing and reducing agents. Several syntheses were performed to study the effect of the hot-injection temperature on nanoparticle size distribution. Results revealed that the injection of precursors in a mixture of Oam and Oac at 180 °C produced paramagnetic nanoparticles with an approximate size of 27 nm; these particles have uniformly defined polyhedral structures and show greater Pt accumulation on the edges and corners. Ni–Pt polyhedral nanoparticles with larger sizes and high polydispersity were obtained as the injection temperature was increased closer to the reduction temperature.

Copyright

Corresponding author

Address all correspondence to J.L. Reyes-Rodríguez at jreyes@cinvestav.mx

References

Hide All
1. Wang, Y., Wan, D., Xian, S., Xia, X., Huang, C.Z., and Xia, Y.: Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano. 7, 4586 (2013).
2. Vargas, E., Toro, P., Palma, J.L., Escrig, J., Chanéac, C., Coradin, T., and Denardin, J.C.: Facile synthesis and magnetic characterizations of single-crystalline hexagonal cobalt nanoplates. Mater. Lett. 94, 121 (2013).
3. Gonzalez, E., Arbiol, J., and Puntes, V.F.: Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science 334, 1377 (2011).
4. Xie, X., Li, Y., Liu, Z.-Q., Haruta, M., and Shen, W.: Low-temperature oxidation of CO catalyzed by Co3O4 nanorods. Nature 458, 746 (2009).
5. Li, J., Liu, J., Yang, Y., and Qin, D.: Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7039 (2015).
6. Cui, C., Gan, L., Li, H.H., Yu, S.H., Heggen, M., and Strasser, P.: Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885 (2012).
7. Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M., Duan, X., Mueller, T., and Huang, Y.: High-performance transition metal – doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230 (2015).
8. Nosheen, F., Zhang, Z., Zhuang, J., and Wang, X.: One-pot fabrication of single-crystalline octahedral Pt–Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 5, 3660 (2013).
9. McEachran, M., Keogh, D., Pietrobon, B., Cathcart, N., Gourevich, I., Coombs, N., and Kitaev, V.: Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles. J. Am. Chem. Soc. 133, 8066 (2011).
10. Ham, S., Jang, H.-J., Song, Y., Shuford, K.L., and Park, S.: Octahedral and cubic gold nanoframes with platinum framework. Angew. Chemie Int. Ed. 54, 9025 (2015).
11. Becknell, N., Zheng, C., Chen, C., Yu, Y., and Yang, P.: Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. Surf. Sci. 648, 328 (2015).
12. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., Yang, P., and Stamenkovic, V.R.: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 (2014).
13. Guisbiers, G., Mendoza-Pérez, R., Bazán-Díaz, L., Mendoza-Cruz, R., Velázquez-Salazar, J.J., and Yacamán, M.J.: Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J. Phys. Chem. C 121, 6930 (2017).
14. Guisbiers, G., Mendoza-Cruz, R., Bazán-Díaz, L., Velázquez-Salazar, J.J., Mendoza-Pérez, R., Robledo-Torres, J.A., Rodríguez-López, J.L., Montejano-Carrizales, J.M., Whetten, R.L., and Yacamán, M.J.: Electrum, the Gold-Silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10, 188 (2016).
15. Mourdikoudis, S. and Liz-Marzán, L.M.: Oleylamine in nanoparticle synthesis. Chem. Mater. 25, 1465 (2013).
16. Bu, W., Chen, Z., Chen, F., and Shi, J.: Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C. 113, 12176 (2009).
17. Humphrey, J.J.L., Sadasivan, S., Plana, D., Celorrio, V., Tooze, R.A., and Fermín, D.J.: Surface activation of Pt nanoparticles synthesized by “Hot Injection” in the presence of Oleylamine. Chem. – A Eur. J. 21, 12694 (2015).
18. Georgiadou, V., Kokotidou, C., Le Droumaguet, B., Carbonnier, B., Choli-Papadopoulou, T., and Dendrinou-Samara, C.: Oleylamine as a beneficial agent for the synthesis of CoFe2O4 nanoparticles with potential biomedical uses. Dalt. Trans. 43, 6377 (2014).
19. Xu, Z., Shen, C., Hou, Y., Gao, H., and Sun, S.: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778 (2009).
20. Niu, G., Zhou, M., Yang, X., Park, J., Lu, N., Wang, J., Kim, M.J., Wang, L., and Xia, Y.: Synthesis of Pt-Ni Octahedra in continuous-flow droplet reactors for the scalable production of highly active catalysts toward oxygen reduction. Nano Lett. 16, 3850 (2016).
21. de la Presa, P., Multigner, M., de la Venta, J., García, M.A., and Ruiz-González, M.L.: Structural and magnetic characterization of oleic acid and oleylamine-capped gold nanoparticles. J. Appl. Phys. 100, 123915 (2006).
22. Chikan, V., and Mclaurin, E.J.: Rapid nanoparticle synthesis by magnetic and microwave heating. Nanomaterials 6, 85 (2016).
23. Timonen, J.V.I., Seppälä, E.T., Ikkala, O., and Ras, R.H.A.: From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation. Angew. Chemie – Int. Ed. 50, 2080 (2011).
24. Razgoniaeva, N., Acharya, A., Sharma, N., Adhikari, P., Shaughnessy, M., Moroz, P., Khon, D., and Zamkov, M.: Measuring the time-dependent monomer concentration during the hot-injection synthesis of colloidal nanocrystals. Chem. Mater. 27, 6102 (2015).
25. Ahrenstorf, K., Heller, H., Kornowski, A., Broekaert, J.A.C., and Weller, H.: Nucleation and growth mechanism of NixPt1-x nanoparticles. Adv. Funct. Mater. 18, 3850 (2008).
26. Qi, J., Jiang, L., Jing, M., Tang, Q., and Sun, G.: Preparation of Pt/C via a polyol process – Investigation on carbon support adding sequence. Int. J. Hydrog. Energy 36, 10490 (2011).
27. Long, N.V., Ohtaki, M., Uchida, M., Jalem, R., Hirata, H., Chien, N.D., and Nogami, M.: Synthesis and characterization of polyhedral Pt nanoparticles: their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 359, 339 (2011).
28. Xiong, Y. and Xia, Y.: Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv. Mater. 19, 3385 (2007).
29. Xia, X., Wang, Y., Ruditskiy, A., and Xia, Y.: 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313 (2013).
30. Murray, C.B. and Kagan, C.R.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).
Type Description Title
PDF
Supplementary materials

Reyes-Rodríguez et al supplementary material
Reyes-Rodríguez et al supplementary material 1

 PDF (2.8 MB)
2.8 MB

Influence of the injection temperature on the size of Ni–Pt polyhedral nanoparticles synthesized by the hot-injection method

  • J.L. Reyes-Rodríguez (a1), A. Velázquez-Osorio (a1), O. Solorza-Feria (a1), D. Bahena-Uribe (a2) and J. Roque (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed