Skip to main content Accessibility help
×
Home

In situ investigation of halide incorporation into perovskite solar cells

  • Jeffery A. Aguiar (a1) (a2) (a3), Nooraldeen R. Alkurd (a4) (a5), Sarah Wozny (a4), Maulik K. Patel (a6), Mengjin Yang (a1), Weilie Zhou (a4), Mowafak Al-Jassim (a1), Terry G. Holesinger (a7), Kai Zhu (a8) and Joseph J. Berry (a8)...

Abstract

Here we report on the material chemistry following crystallization in the presence of water vapor of chlorinated formamidinium lead-triiodide (NH2CH = NH2PbI3−xClx) perovskite films. We found in-situ exposure to water vapor reduces, or possibly eliminates, the retention of chlorine (Cl) inside NH2CH = NH2PbI3−xClx crystals. There is a strong tendency toward Cl volatility, which indicates the sensitivity of these materials for their integration into solar cells. The requisite for additional efforts focused on the mitigation of water vapor is reported. Based on the in situ results, hot casting (<100 °C) in dry conditions demonstrates improved film coverage and Cl retention with efficiencies reaching 12.07%.

Copyright

Corresponding author

Address all correspondence to Jeffery A. Aguiar Jeffery.Aguiar@inl.gov

References

Hide All
1.Sawin, J.L. and Sverrisson, F.: Renewable 2014 Global Status Report (REN21 Secretariat, Paris, France, 2014).
2.Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).
3.Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).
4.Gratzel, M.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014).
5.Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., and Grätzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151 (2014).
6.Boix, P.P., Nonomura, K., Mathews, N., and Mhaisalkar, S.G.: Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17, 16 (2014).
7.Mitzi, D.B.: Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, in Progress in Inorganic Chemistry (UNEP, Paris, France, 2007), p. 1.
8.Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).
9.Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).
10.Zhao, Y. and Zhu, K.: Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 136, 12241 (2014).
11.Zhao, Y. and Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014).
12.Chen, Q., Zhou, H., Fang, Y., Stieg, A.Z., Song, T.-B., Wang, H.-H., Xu, X., Liu, Y., Lu, S., You, J., Sun, P., McKay, J., Goorsky, M.S., and Yang, Y.: The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 1, 7269 (2015).
13.Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., and McGehee, M.D.: Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613 (2015).
14.Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., and Han, H.: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).
15.Niu, G., Li, W., Meng, F., Wang, L., Dong, H., and Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014).
16.You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., and Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).
17.Christians, J.A., Miranda Herrera, P.A., and Kamat, P.V.: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015).
18.Wang, F., Yu, H., Xu, H., and Zhao, N.: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 1120 (2015).
19.Lv, S., Pang, S., Zhou, Y., Padture, N.P., Hu, H., Wang, L., Zhou, X., Zhu, H., Zhang, L., Huang, C., and Cui, G.: One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Clx) for mesoscopic perovskite-polymer solar cells. Phys. Chem. Chem. Phys. 16, 19206 (2014).
20.Unger, E.L., Bowring, A.R., Tassone, C.J., Pool, V., Gold-Parker, A., Cheacharoen, R., Stone, K.H., Hoke, E.T., Toney, M.F., and McGehee, M.D.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 71587165 (2014).
21.Niu, G., Guo, X., and Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 89708980 (2015).
22.Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsøe, H., and Jacobsen, C.J.H.: Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001).
23.Alsem, D., Salmon, N.J., Unocic, R.R., Veith, G.M., and , K.L. More: in-situ liquid and gas transmission electron microscopy of nano-scale materials. Microsc. Microanal. 18(Supplement S2), 1158 (2012).
24.Aguiar, J.A., Wozny, S., Holesinger, T.G., Aoki, T., Patel, M.K., Yang, M., Berry, J.J., Al-Jassim, M., Zhou, W., and Zhu, K.: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372 (2016).
25.Aguiar, J.A., Wozny, S., Holesinger, T.G., Aoki, T., Patel, M.K., Yang, M., Berry, J.J., Al-Jassim, M., Zhou, W., and Zhu, K.: In situ investigation of the role of temperature on the formation and metastability of higher efficiency perovskite solar cells. Energy Environ. Sci. 9, 23722382 (2016).
26.Senga, R. and Suenaga, K.: Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015).
27.Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).
28.Grancini, G., Marras, S., Prato, M., Giannini, C., Quarti, C., De Angelis, F., De Bastiani, M., Eperon, G.E., Snaith, H.J., Manna, L., and Petrozza, A.: The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5, 3836 (2014).
29.Starr, D.E., Sadoughi, G., Handick, E., Wilks, R.G., Alsmeier, J.H., Kohler, L., Gorgoi, M., Snaith, H.J., and Bar, M.: Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment. Energy Environ. Sci. 8, 1609 (2015).
30.Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.-L., and Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015).
Type Description Title
WORD
Supplementary materials

Aguiar supplementary material
Aguiar supplementary material 1

 Word (3.5 MB)
3.5 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed