Skip to main content Accessibility help

The hydrobaric effect on cathodically deposited titanium dioxide photocatalyst

  • Tso-Fu Mark Chang (a1) (a2), Wei-Hao Lin (a1) (a3), Chun-Yi Chen (a1) (a2), Yung-Jung Hsu (a3) and Masato Sone (a1) (a2)...


The hydrobaric effect on photoactivity of titanium dioxide (TiO2) fabricated by cathodic deposition in an aqueous solution was evaluated in this study. When the applied pressure was increased to 35 MPa, the water-splitting performance was improved by almost fourfold of the performance of the TiO2 prepared at atmospheric pressure. The surface states effect was significant in the deposited TiO2, which was exploited to affect the charges recombination of TiO2, and thereby enhance the resultant photoelectrochemical water-splitting performance. The hydrobaric cathodic deposition could be extended to fabrication of other metal oxides to eliminate the negative influence from the high-temperature process.


Corresponding author

Address all correspondence to Tso-Fu Mark Chang at; Yung-Jung Hsu


Hide All
1. Xiang, B., Zhang, Y., Wang, Z., Luo, X.H., Zhu, Y.W., Zhang, H.Z., and Yu, D.P.: Field-emission properties of TiO2 nanowire arrays. J. Phys. D: Appl. Phys. 38, 1152 (2005).
2. Ou, K.L., Tadytin, D., Steirer, K.X., Placencia, D., Nguyen, M., Lee, P., and Armstrong, N.R.: Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. J. Mater. Chem. A 1, 6794 (2013).
3. Antonelli, D.M. and Ying, J.Y.: Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew. Chem. Int. Ed. 34, 2014 (1995).
4. Nakahira, A., Kubo, T., and Numako, C.: Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorg. Chem. 49, 5845 (2010).
5. Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A.: TiO2 nanotube arrays of 1000 µm length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007).
6. Huang, C.C., Hsu, H.C., Hu, C.C., Chang, K.H., and Lee, Y.F.: Morphology control of cathodically deposited TiO2 films. Electrochim. Acta 55, 7028 (2010).
7. Hu, C.C., Huang, C.C., and Chang, K.H.: A novel solution for cathodic deposition of porous TiO2 films. Electrochem. Commun. 11, 434 (2009).
8. Chang, T.F.M., Lin, W.H., Hsu, Y.J., Sato, T., and Sone, M.: Cathodic deposition of TiO2 thin films with supercritical CO2 emulsified electrolyte. Electrochem. Commun. 33, 68 (2013).
9. Lin, W.H., Chen, C.Y., Chang, T.F.M., Hsu, Y.J., and Sone, M.: Effects of pressure in cathodic deposition of TiO2 and SnO2 with Supercritical CO2 emulsified electrolyte. Electrochim. Acta 208, 244 (2016).
10. Wang, J., Guo, B., Zhang, X., Zhang, Z., Han, J., and Wu, J.: Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. Ultrason. Sonochem. 12, 331 (2005).
11. Bao, S.J., Li, C.M., Zang, J.F., Cui, X.Q., Qiao, Y., and Guo, J.: New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater. 18, 591 (2008).
12. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
13. O'Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
14. Yu, J.G., Yu, H.G., Cheng, B., Zhao, X.J., Yu, J.C., and Ho, W.K.: The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 107, 13871 (2003).
15. Yan, C., Kang, W., Wang, J., Cui, M., Wang, X., Foo, C. Y., Chee, K. J., and Lee, P. S.: Stretchable and wearable electrochromic devices. ACS Nano 8, 316 (2014).
16. Pu, Y.C., Wang, G.M., Chang, K.D., Ling, Y.C., Lin, Y.K., Fitzmorris, B.C., Liu, C.M., Lu, X.H., Tong, Y.X., Zhang, J.Z., Hsu, Y.J., and Li, Y.: Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817 (2013).
17. Cowan, A.J., Barnett, C.J., Pendlebury, S.R., Barroso, M., Sivula, K., Grätzel, M., Durrant, J.R., and Klug, D.R.: Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2 , J. Am. Chem. Soc. 133, 10134 (2011).
Type Description Title
Supplementary materials

Chang supplementary material
Chang supplementary material 1

 PDF (209 KB)
209 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed