Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:53:33.029Z Has data issue: false hasContentIssue false

Hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanofibers with enhanced photocatalytic activity

Published online by Cambridge University Press:  24 February 2016

Qin Huang
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Guohua Jiang*
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People's Republic of China Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People's Republic of China
Hua Chen
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Lei Li
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Yongkun Liu
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Zaizai Tong
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Wenxing Chen
Affiliation:
Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, People's Republic of China Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, People's Republic of China
*
Address all correspondence to Guohua Jiang at ghjiang_cn@zstu.edu.cn
Get access

Abstract

In this paper, hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanofibers (CNFs) were prepared by combination of electrospinning and carbonization. Compared with the smooth surface of CNFs, the rough surface with hierarchical nanostructures of BiOBr/AgBr can be obtained by adding the certain amount of BiOBr/AgBr precursors into the spinning solution. The as-prepared composite CNFs exhibited highly photocatalytic activities for degradation of rhodamine-B and reduction of p-nitrophenol under the visible-light irradiation and at room temperature. Furthermore, the as-prepared composite CNFs showed the favor separation, recovery, and cyclic utilization properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, G., Pan, J., Yin, L., Irvine, J.T.S., Li, F., Tan, J., Wormald, P., and Cheng, H-M.: Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres. Adv. Funct. Mater. 22, 32333238 (2012).Google Scholar
2. Zhang, J., Xu, L.J., Zhu, Z.Q., and Liu, Q.J.: Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater. Res. Bull. 70, 358364 (2015).Google Scholar
3. Zang, Y. and Farnood, R.: Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl. Catal. B: Environ. 79, 334340 (2008).Google Scholar
4. He, F., Qin, X., Zhang, H., Yang, Y., Zhang, X., and Yang, Y.: Characterization of laccase isoenzymes from the white-rot fungus Ganoderma sp.En3 and synergistic action of isoenzymes for dye decolorization. J. Chem. Technol. Biotechnol. 90, 22652279 (2014).CrossRefGoogle Scholar
5. Asgher, M., Bhatti, H.N., Ashraf, M., and Legge, R.L.: Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19, 771783 (2008).Google Scholar
6. Dong, J., Wang, X., Li, B., and Chi, Z.: Kinetics of BTEX biodegradation coupled with Fe(III) reduction by indigenous microorganisms in simulated underground environment. Desalin. Water Treat. 54, 23342341 (2015).CrossRefGoogle Scholar
7. Di Bella, G., Giustra, M.G., and Freni, G.: Optimisation of coagulation/flocculation for pre-treatment of high strength and saline wastewater: performance analysis with different coagulant doses. Chem. Eng. J. 254, 283292 (2014).Google Scholar
8. Suopajärvi, T., Liimatainen, H., Hormi, O., and Niinimäki, J.: Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem. Eng. J. 231, 5967 (2013).Google Scholar
9. Ghodbane, H., Hamdaoui, O., Vandamme, J., Van Durme, J., Vanraes, P., Leys, C., and Nikiforov, A.Y.: Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2 . Open Chem. 13, 325331 (2015).Google Scholar
10. Anderson, C. and Bard, A.J.: An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99, 98829885 (1995).Google Scholar
11. Jiang, G., Zheng, X., Wang, Y., Li, T., and Sun, X.: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol. 207, 465469 (2011).Google Scholar
12. Jiang, G., Wang, R., Wang, Y., and Sun, X.: Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technol. 212, 284288 (2011).Google Scholar
13. Khenniche, L., Favier, L., Bouzaza, A., Fourcade, F., Aissani, F., and Amrane, A.: Photocatalytic degradation of bezacryl yellow in batch reactors—feasibility of the combination of photocatalysis and a biological treatment. Environ. Technol. 36, 110 (2015).CrossRefGoogle Scholar
14. Panpa, W., Sujaridworakun, P., and Jinawath, S.: Photocatalytic activity of TiO2/ZSM-5 composites in the presence of SO4 2− ion. Appl. Catal. B: Environ. 80, 271276 (2008).Google Scholar
15. Kinadjian, N., Le Bechec, M., Henrist, C., Prouzet, E., Lacombe, S., and Backov, R.: Varying TiO2 macroscopic fiber morphologies toward tuning their photocatalytic properties. ACS Appl. Mater. Interfaces 6, 1121111218 (2014).Google Scholar
16. Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., and Cheng, W.: Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 41544158 (2011).Google Scholar
17. Katsumata, H., Sakai, T., Suzuki, T., and Kaneco, S.: Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind. Eng. Chem. Res. 53, 80188025 (2014).CrossRefGoogle Scholar
18. Carey, J.H., Lawrence, J., and Tosine, H.M.: Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension. Bull. Environ. Contam. Toxicol. 16, 697701 (1976).Google Scholar
19. Fang, Y., Jiang, G., Wang, R., Wang, Y., Sun, X., Wang, S., and Wang, T.: CuO/TiO2 nanocrystals grown on graphene oxide as visible-light responsive photocatalytic hybrid materials. Bull. Mater. Sci. 35, 495499 (2012).Google Scholar
20. Jiang, G., Zhou, Y., Wang, R., Wang, X., Hu, R., Xi, X., Wang, S., Wang, T., and Chen, W.: Hollow TiO2 nanocages with rubik-like structure for high-performance photocatalysts. Mater. Lett. 89, 5962 (2012).Google Scholar
21. Humayun, M., Zada, A., Li, Z., Xie, M., Zhang, X., Qu, Y., Raziq, F., and Jing, L.: Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B: Environ. 180, 219226 (2016).Google Scholar
22. Chen, Y., Chen, D., Chen, J., Lu, Q., Zhang, M., Liu, B., Wang, Q., and Wang, Z.: Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity. J. Alloy. Compd. 651, 114120 (2015).CrossRefGoogle Scholar
23. Li, X., Jiang, G., Wei, Z., Wang, X., Chen, W., and Shen, L.: One-pot solvothermal preparation of S-doped BiOBr microspheres for efficient visible-light induced photocatalysis. MRS Commun. 3, 219224 (2013).Google Scholar
24. Jiang, G., Tang, B., Li, X., Wei, Z., Wang, X., Liu, Y., and Chen, W.: Preparation of Ag-modified Zn2GeO4 nanorods for photodegradation of organic pollutants. Powder Technol. 251, 3740 (2014).Google Scholar
25. Tang, B., Jiang, G., Wei, Z., Li, X., Wang, X., Jiang, T., Chen, W., and Wan, J.: Preparation of N-doped Bi2WO4 microspheres for efficient visible-light induced photocatalysis. Acta Metall. Sin. Engl. Lett. 27, 124130 (2014).Google Scholar
26. Wang, W., Huang, F., Lin, X., and Yang, J.: Visible-light-responsive photocatalysts xBiOBr–(1−x)BiOI. Catal. Commun. 9, 812 (2008).Google Scholar
27. Cui, L., Jiao, T., Zhang, Q., Zhou, J., and Peng, Q.: Facile preparation of silver halide nanoparticles as visible light photocatalysts. Nanotechnol. Nanomater. 5, 60910 (2015).Google Scholar
28. Kong, L., Jiang, Z., Lai, H.H., Nicholls, R.J., Xiao, T., Jones, M.O., and Edwards, P.P.: Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J. Catal. 293, 116125 (2012).CrossRefGoogle Scholar
29. Lu, L., Kong, L., Jiang, Z., Lai, H.H-C., Xiao, T., and Edwards, P.P.: Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr. Catal. Lett. 142, 771778 (2012).Google Scholar
30. Liu, Y., Jiang, G., Li, L., Chen, H., Huang, Q., Jiang, T., Du, X., and Chen, W.: Preparation of Au/PAN nanofibrous membranes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 50, 81208127 (2015).Google Scholar
31. Liu, Y., Zhang, M., Li, L., and Zhang, X.: One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X = Mo, W) nanosheets. Appl. Catal. B: Environ. 160–161, 757766 (2014).CrossRefGoogle Scholar
32. Huang, H., Wang, S., Tian, N., and Zhang, Y.: A one-step hydrothermal preparation strategy for layered BiIO4/Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. RSC Adv. 4, 55615567 (2014).Google Scholar
33. Zhang, M., Shao, C., Mu, J., Zhang, Z., Guo, Z., Zhang, P., and Liu, Y.: One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605612 (2012).Google Scholar
34. Jiang, G., Wei, Z., Chen, H., Du, X., Li, L., Liu, Y., Huang, Q., and Chen, W.: Preparation of novel carbon nanofibers with BiOBr and AgBr decorating for photocatalytic degradation of rhodamine B. RSC Adv. 5, 3043330437 (2015).Google Scholar
35. Zhang, J., Shi, F., Lin, J., Chen, D., Gao, J., Huang, Z., Ding, X., and Tang, C.: Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater. 20, 29372941 (2008).Google Scholar
36. Jiang, G., Li, X., Wei, Z., Wang, X., Tang, B., and Chen, W.: Growth of N-doped BiOBr nanosheets on carbon fibers for high efficient photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol. 260, 8489 (2014).Google Scholar
37. Jiang, G., Li, X., Wei, Z., Wang, X., Jiang, T., Du, X., and Chen, W.: Immobilization of N/S-codoped BiOBr nanosheets on glass fibers for photocatalytic degradation of rhodamine B. Powder Technol. 261, 170175 (2014).Google Scholar
38. Dong, R., Tian, B., Zhang, J., Wang, T., Tao, Q., Bao, S., Yang, F., and Zeng, C.: AgBr@Ag/TiO2 core-shell composite with excellent visible light photocatalytic activity and hydrothermal stability. Catal. Commun. 38, 1620 (2013).Google Scholar
39. Tian, B., Wang, T., Dong, R., Bao, S., Yang, F., and Zhang, J.: Core-shell structures γ-Fe2O3@SiO2@AgBr: Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation. Appl. Catal. B: Environ. 147, 2228 (2014).CrossRefGoogle Scholar
40. Prieto, P., Nistor, V., Nouneh, K., Oyama, M., Abd-Lefdil, M., and Díaz, R.: XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258, 88078813 (2012).Google Scholar
41. Feng, N., Wang, Q., Zheng, A., Zhang, Z., Fan, J., Liu, S-B., Amoureux, J-P., and Deng, F.: Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 135, 16071616 (2013).Google Scholar
42. Jinfeng, Z. and Tao, Z.: Preparation and characterization of highly efficient and stable visible-light-responsive photocatalyst AgBr/Ag3PO4 . J. Nanomater. 2013, 565074 (2013).CrossRefGoogle Scholar
43. Liu, H., Su, Y., Chen, Z., Jin, Z., and Wang, Y.: Novel 3D flowerlike Au/BiOBr0.2I0.8 composites with highly enhanced visible-light photocatalytic performances. Sep. Purif. Technol. 133, 343350 (2014).CrossRefGoogle Scholar
44. Liu, C., Yang, D., Jiao, Y., Tian, Y., Wang, Y., and Jiang, Z.: Biomimetic synthesis of TiO2–SiO2–Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5, 38243832 (2013).Google Scholar
45. Chen, H., Jiang, G., Li, L., Liu, Y., Huang, Q., Jiang, T., and Du, X.: Facile fabrication of highly flexible graphene paper for photocatalytic reduction of 4-nitrophenol. Bull. Mater. Sci. 38, 14571463 (2015).Google Scholar
46. Méndez, D., Vargas, R., Borrás, C., Blanco, S., Mostany, J., and Scharifker, B.R.: A rotating disk study of the photocatalytic oxidation of p-nitrophenol on phosphorus-modified TiO2 photocatalyst. Appl. Catal. B: Environ. 166–167, 529534 (2015).Google Scholar