Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T16:06:28.571Z Has data issue: false hasContentIssue false

Growth process and morphology control of SBA-15 particles: synergistic effects of tetraethoxysilane and Pluronic-123 concentrations

Published online by Cambridge University Press:  21 November 2016

Kai Zhuang
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Guangfu Yin*
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Ximing Pu
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Xianchun Chen
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Xiaoming Liao
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Zhongbin Huang
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
Yadong Yao
Affiliation:
College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
*
Address all correspondence to Guangfu Yin at nic0700@scu.edu.cn
Get access

Abstract

The synergistic effects of the template [Pluronic-123 (P123)] and the silica source [tetraethoxysilane (TEOS)] concentrations on the SBA-15 mesoporous silica morphology were investigated through adjusting the system initial solution volume with the same amounts of silica source and template. It found interestingly that the SBA-15 morphology changed from the hexagonal plate-like shape to the gear-like shape with the decrease of the P123 and TEOS concentration. Based on the morphology variations, the growth of the gear-like morphology was speculated to be formed through the preferential growth at the corner and the layer-by-layer growth in the end face of the ordinary hexagonal plate-like particle.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhao, D., Sun, J., Li, Q., and Stucky, G.D.: Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000).CrossRefGoogle Scholar
2. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).CrossRefGoogle ScholarPubMed
3. Yu, C., Fan, J., Tian, B., Zhao, D., and Stucky, G.D.: High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 14, 1742 (2002).3.0.CO;2-3>CrossRefGoogle Scholar
4. Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., and Li, Y.: Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew. Chem. Int. Ed. 44, 5083 (2005).CrossRefGoogle ScholarPubMed
5. Fan, J., Lei, J., Wang, L., Yu, C., Tu, B., and Zhao, D.: Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologiesElectronic supplementary information (ESI) available: XRD and nitrogen sorption isotherms for MPSs used in bioimmobilization. Chem. Commun. 17, 2140 (2003).CrossRefGoogle Scholar
6. Johansson, E.M., Córdoba, J.M., and Odén, M.: Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18 nm pores. Mater. Lett. 63, 2129 (2009).CrossRefGoogle Scholar
7. He, Q., Shi, J., Cui, X., Zhao, J., Chen, Y., and Zhou, J.: Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features. J. Mater. Chem. 19, 3395 (2009).CrossRefGoogle Scholar
8. Sayari, A., Han, B.-H., and Yang, Y.: Simple synthesis route to monodispersed SBA-15 silica rods. J. Am. Chem. Soc. 126, 14348 (2004).CrossRefGoogle ScholarPubMed
9. Chen, S.-Y., Tang, C.-Y., Chuang, W.-T., Lee, J.-J., Tsai, Y.-L., Chan, J.C.C., Lin, C.-Y., Liu, Y.-C., and Cheng, S.: A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem. Mater. 20, 3906 (2008).CrossRefGoogle Scholar
10. Chen, L., Wang, Y.M., and He, M.-Y.: Morphological control of mesoporous silica SBA-15 synthesized at low temperature without additives. J. Porous Mater. 18, 211 (2010).CrossRefGoogle Scholar
11. Liu, J., Li, C., Yang, Q., and Li, C.: Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption. Langmuir 23, 7255 (2007).CrossRefGoogle Scholar
12. Linton, P., Wennerstrom, H., and Alfredsson, V.: Controlling particle morphology and size in the synthesis of mesoporous SBA-15 materials. Phys. Chem. Chem. Phys. 12, 3852 (2010).CrossRefGoogle ScholarPubMed
13. Naik, S.P., Elangovan, S.P., Okubo, T., and Sokolov, I.: Morphology control of mesoporous silica particles. J. Phys. Chem. C 111, 11168 (2007).CrossRefGoogle Scholar
14. Ding, Y., Yin, G., Liao, X., Huang, Z., Chen, X., Yao, Y., and Li, J.: A convenient route to synthesize SBA-15 rods with tunable pore length for lysozyme adsorption. Microporous Mesoporous Mater. 170, 45 (2013).CrossRefGoogle Scholar
15. Linton, P. and Alfredsson, V.: Growth and morphology of mesoporous SBA-15 particles. Chem. Mater. 20, 2878 (2008).CrossRefGoogle Scholar
16. Linton, P., Rennie, A.R., Zackrisson, M., and Alfredsson, V.: In situ observation of the genesis of mesoporous silica SBA-15: dynamics on length scales from 1 nm to 1 microm. Langmuir 25, 4685 (2009).CrossRefGoogle ScholarPubMed
17. Zhu, Y., Li, H., Xu, J., Yuan, H., Wang, J., and Li, X.: Monodispersed mesoporous SBA-15 with novel morphologies: controllable synthesis and morphology dependence of humidity sensing. CrystEngComm 13, 402 (2011).CrossRefGoogle Scholar
18. Volkov, D.O., Benson, J., Kievsky, Y.Y., and Sokolov, I.: Towards understanding of shape formation mechanism of mesoporous silica particles. Phys. Chem. Chem. Phys. 12, 341 (2010).CrossRefGoogle ScholarPubMed
19. Moulin, R., Schmitt, J., Lecchi, A., Degrouard, J., and Impéror-Clerc, M.: Morphologies of mesoporous SBA-15 particles explained by the competition between interfacial and bending energies. Soft Matter 9, 11085 (2013).CrossRefGoogle Scholar
20. Liu, J., Yang, Q., Zhao, X.S., and Zhang, L.: Pore size control of mesoporous silicas from mixtures of sodium silicate and TEOS. Microporous Mesoporous Mater. 106, 62 (2007).CrossRefGoogle Scholar
21. Ruthstein, S., Schmidt, J., Kesselman, E., Talmon, Y., and Goldfarb, D.: Resolving intermediate solution structures during the formation of mesoporous SBA-15. J. Am. Chem. Soc. 128, 3366 (2006).CrossRefGoogle ScholarPubMed
22. Manet, S., Schmitt, J., Imperor-Clerc, M., Zholobenko, V., Durand, D., Oliveira, C.L., Pedersen, J.S., Gervais, C., Baccile, N., Babonneau, F., Grillo, I., Meneau, F., and Rochas, C.: Kinetics of the formation of 2D-hexagonal silica nanostructured materials by nonionic block copolymer templating in solution. J. Phys. Chem. B 115, 11330 (2011).CrossRefGoogle ScholarPubMed
23. Flodström, K., Wennerström, H., and Alfredsson, V.: Mechanism of mesoporous silica formation. A time-resolved NMR and TEM study of silica–block copolymer aggregation. Langmuir 20, 680 (2004).CrossRefGoogle ScholarPubMed
24. Privman, V., Goia, D.V., Park, J., and Matijević, E.: Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J. Colloid Interface Sci. 213, 36 (1999).CrossRefGoogle ScholarPubMed
25. Park, S.S., Lee, C.H., Jeon, J.H., Jo, S.J., and Park, D.H.: Morphological control of periodic mesoporous organosilica with agitation. Bull. Korean Chem. Soc. 22, 948 (2001).Google Scholar
26. Schmitt, J., Kjellman, T., Kwasniewski, P., Meneau, F., Pedersen, J.S., Edler, K.J., Rennie, A.R., Alfredsson, V., and Imperor-Clerc, M.: Outset of the morphology of nanostructured silica particles during nucleation followed by ultrasmall-angle X-ray scattering. Langmuir 32, 5162 (2016).CrossRefGoogle ScholarPubMed
27. Lee, H.I., Kim, J.H., Stucky, G.D., Shi, Y., Pak, C., and Kim, J.M.: Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales. J. Mater. Chem. 20, 8483 (2010).CrossRefGoogle Scholar
28. Turkevich, J., Stevenson, P.C., and Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 (1951).CrossRefGoogle Scholar