Skip to main content Accessibility help
×
Home

Graphene nanohybrids for enhanced catalytic activity and large surface area

  • Sabeen Fatima (a1), S. Irfan Ali (a2), Daniyal Younas (a1), Amjad Islam (a3), Deji Akinwande (a4) and Syed Rizwan (a1)...

Abstract

Nanohybrids containing graphene and bismuth ferrite have been actively employed as efficient photo-catalysts these days owing to the low rate of charge carrier's (e–h+) recombination, moderate surface area with a suitable range of band-gaps. We have synthesized nanohybrids of graphene oxide (GO) and doped BiFeO3 using a co-precipitation method and the doping elements were lanthanum and manganese, hence called BLFMO/GO nanohybrids. The surface area of BLFMO [La = 15% increased from 6.8 m2/g (for pure) to 62.68 m2/g (in nanohybrid)]. Also, the bandgap of the BLFMO/GO nanohybrid reduced significantly up to 1.75 eV. The resulting BLFMO/GO nanohybrid represents significantly higher catalytic activity (96% in 30 min) than the pure BiFeO3 (30% in 30 min).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Graphene nanohybrids for enhanced catalytic activity and large surface area
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Graphene nanohybrids for enhanced catalytic activity and large surface area
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Graphene nanohybrids for enhanced catalytic activity and large surface area
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to Syed Rizwan at syedrizwanh83@gmail.com

References

Hide All
1.Srivastava, R., and Yadav, B.C.: Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4, 141154 (2012).
2.Tsuji, M., Wada, Y., Yamamoto, T., Sano, T., and Tamaura, Y.: CO2 decomposition by metallic phase on oxygen-deficient Ni(II)-bearing ferrite. J. Mater. Sci. Lett. 15, 156157 (1996).
3.Choung, J., Xu, Z., and Finch, J.: Role of complexing agents in ferrite formation under ambient conditions. Ind. Eng. Chem. Res. 38, 46894693 (1999).
4.Rondinone, A., Samia, A., and Zhang, Z.: A chemometric approach for predicting the size of magnetic spinel ferrite nanoparticles from the synthesis conditions. J. Phys. Chem. B. 104, 79197922 (2000).
5.Golman, A.: Modern Ferrite Technology, 2nd ed. (Springer Science & Business Media, Pittsburgh, USA, 2006).
6.Catalan, G., and Scott, J. F.: Physics and applications of bismuth ferrite. J. Adv. Mater. 21, 24632485 (2009).
7.Zaleski, M.: Thermally stimulated processes related to photochromism of scandium doped sillenites. J. Appl. Phys. 87, 42794284 (2000).
8.Borse, P., Joshi, U., Ji, S., Jang, J., Jeong, E., Kim, H., and Lee, J.: Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis. Appl. Phys. Lett. 90, 13 (2007).
9.Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 5558 (2003).
10.Nippolainen, E., Kamshilin, A., Prokoev, V., and Jaskelainen, T.: Combined formation of a self-pumped phase-conjugate mirror and spatial subharmonics in photorefractive sillenites. Appl. Phys. Lett. 78, 859861 (2001).
11.Roussak, O., and Gesse, H.A.: Applied Chemistry: A Textbook for Engineers and Technologists, 2nd edn. (Springer Science & Business Media, New York, 2012).
12.Lee, C., Wei, X., Kysar, J., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).
13.Falkovsky, L. A.: Optical properties of graphene. J. Phys.: Conf. Ser. 129, 17 (2008).
14.Choi, W., and Lee, J.W.: Graphene: Synthesis and Applications, 1st ed. (CRC Press, Boca Raton, USA, 2016).
15.Mertens, R.: The Graphene Handbook, 2016 ed. (lulu.com, USA, 2016).
16.Silva, A. M., and Carabineiro, S. A.: Advances in Carbon Nanostructures . (InTech, USA, 2016).
17.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269272 (2001).
18.Zhang, Y., Tang, Z.R., Fuand, X.Z., and Xu, Y.J.: TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-Graphene truly different from other TiO2-carbon composite materials. ACS Nano 4, 73037314 (2010).
19.Tonga, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M., and Ye, J.H.: Nano-photocatalytic materials: possibilities and challenge. Adv. Mater. 24, 577584 (2012).
20.Meng, F.K., Hong, Z.L., Arndt, J., Li, M., Zhi, M.J., Yang, F., and Wu, N.Q.: Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res. 5, 213221 (2012).
21.Zhang, M.Y., Shao, C.L., Mu, J.B., Huang, X.M., Zhang, Z.Y., Guo, Z.C., Zhang, P., and Liu, Y.C.: Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J. Mater. Chem. 22, 577584 (2012).
22.Seh, Z.W., Liu, S.H., Low, M., Zhang, S.Y., Liu, Z.L., Mlayah, A., and Han, M.Y.: Janus Au-TiO2 Photocatalysts with strong localization of plasmonic near fields for efficient visible light hydrogen generation. Adv. Mater. 24, 23102314 (2012).
23.Zhou, Y., Muhich, C.L., Neltner, B.T., Weimer, A.W., and Musgrave, C.B.: Growth of Pt particles on the anatase TiO2 (101) surface. J. Phys. Chem. C 116, 1211412123 (2012).
24.Kong, L.N., Chen, W., Ma, D.K., Yang, Y., Liu, S.S., and Huang, S.M.: Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J. Mater. Chem. 22, 719724 (2012).
25.Fujishima, A., and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).
26.Stengl, V., Popelkova, D., and Vlaci, P.: TiO2-graphene nanocomposite as high performance photocatalysts. J. Phys. Chem. C 115, 2520925218 (2011).
27.Liang, Y.Y., Wang, H.L., Casalongue, H.S., Chen, Z., and Dai, H.J.: TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701705 (2010).
28.Gao, F., Chen, X., Yin, K., Dong, S., Ren, Z., Yuan, F., Yu, Z.Z.T., and Liu, J. M.: Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Nature 238, 28892892 (1972).
29.An, J., Zhu, L., Wang, N., Song, Z., Yang, Z., Du, D., and Tang, H.: Photo-Fenton like degradation of tetrabromobisphenol A with graphene BiFeO3 composite as a catalyst. Chem. Eng. J. 219, 225237 (2013).
30.Li, Z., Shen, Y., Yang, C., Lei, Y., Guan, Y., Lin, Y., Liu, D., and Nan, C.W.: Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids. J. Mater. Chem. A 1, 823829 (2013).
31.Joshi, U.A., Jang, J.S., Borse, P.H., and Lee, J.S.: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 13 (2008).
32.Ruan, Q.J., and Zhang, W.D.: Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113, 41684173 (2009).
33.Sun, S., Wang, W., Zhang, L., and Shang, M.: Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions. J. Phys. Chem. C 113, 1282612831 (2009).
34.Soltani, T. and Entezari, M. H.: Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J. Mol. Catal. A: Chem. 377, 197203 (2013).
35.Soltani, T., and Entezari, M.H.: Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason. Sonochem. 20, 12451253 (2013).
36.Zhang, N., Chen, D., Niu, F., Wang, S., Qin, L., and Huang, Y.: Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 6, 111 (2016).
37.Irfan, S., Rizwan, S., Shen, Y., Tomovska, R., Zulfiqar, S., Sarwar, M.I., and Nan, C.-W.: Mesoporous template-free gyroid-like nanostructures based on La and Mn co-doped Bismuth ferrites with improved photocatalytic activity. RSC Adv. 6, 114183114189 (2016).
38.Irfan, S., Rizwan, S., Shen, Y., Li, L., Asfandiyar, A., Butt, S., and Nan, C.-W.: The gadolinium (Gd3+) and tin (Sn4+) co-doped BiFeO3 nanoparticles as new solar light active photocatalysts. Sci. Rep. 7, 112 (2017).
39.Wang, S., Chen, D., Niu, F., Zhang, N., Qin, L., and Huang, Y.: Pd cocatalyst on Sm-doped BiFeO3 nanoparticles: synergetic effect of a Pd cocatalyst and samarium doping on photocatalysis. RSC Adv. 6, 3457434584 (2016).
40.Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., and Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. N. Y. 39, 507514 (2001).
41.Xiang, Q., Yu, J., and Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782796 (2012).
42.Dai, J.F., Xian, T., Di, L.J., and Yang, H.: Preparation of BiFeO3-graphene nanocomposites and their enhanced photocatalytic activities. J. Nanomater. 2013, 15 (2013).
43.Sun, A., Chen, H., Song, C., Jiang, F., Wang, X., and Fu, Y.: Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 3, 43324340 (2013).
44.Sun, H., Liu, Y., Zhang, Y., Lv, L., Zhou, J., and Chen, W.: Synthesis of Bi2Fe4O9/reduced graphene oxide composite by one-step hydrothermal method and its high photocatalytic performance. J. Mater. Sci.: Mater. Electron. 25, 42124218 (2014).
45.Hu, Z.T., Liu, J., Yan, X., Oh, W.D., and Lim, T.T.: Low-temperature synthesis of grapheme/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. Chem. Eng. J. 262, 10221032 (2015).
46.Soltani, T., and Lee, B.K.: Sono-synthesis of nanocrystallized BiFeO3/reduced graphene oxide composites for visible photocatalytic degradation improvement of bisphenol A. Chem. Eng. J. 306, 204213 (2016).
47.Garcia, F.G., Riccardi, C.S., and Simes, A.Z.: Lanthanum doped BiFeO3 powders: syntheses and characterization. J. Alloys. Compd. 501, 2529 (2010).
48.Arya, G.S., and Negi, N.S.: Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D: Appl. Phys. 46, 18 (2013).
49.Trapalis, A., Todorova, N., Giannakopoulou, T., Boukos, N., Speliotis, T., Dimotikali, D., and Yu, J.: TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant stabilized graphene and reduced graphene oxide. Appl. Catal. B: Environ. 180, 637647 (2016).
50.Li, Y., Cao, M.S., Wang, D.W., and Yuan, J.: High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 5, 7718477191 (2015).
51.Xu, Q., Sheng, Y., Khalid, M., Cao, Y., Wang, Y., Qiu, X., Zhang, W., He, M., Wang, S., Zhou, S., Li, Q., Wu, D., Zhai, Y., Liu, W., Wang, P., Xu, Y.B., and Du, J.: Magnetic interactions in BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices. Sci. Rep. 5, 18 (2015).
52.Hu, W.B., Liu, Y., Withers, R.L., Frankcombe, T.J., Noren, L., Snashall, A., Kitchin, M., Smith, P., Gong, B., Chen, H., Schiemer, J., Brink, F., and Wong-Leung, J.: Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821826 (2013).
53.Shi, L., Liang, L., Ma, J., Wang, F., and Sun, J.: Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4 composite photocatalysts under visible light. Dalton Trans. 43, 72367244 (2014).
54.Liao, G., Chen, S., Quan, X., Yu, H., and Zhao, H.: Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22, 27212726 (2012).
55.Miriyala, N., Prashanthi, K., and Thundat, T.: Oxygen vacancy dominant strong visible photoluminescence from BiFeO3 nanotubes. Phys. Status Solidi RRL 7, 668671 (2013).
56.Kubelka, P., and Munk, F.: Ein beitrag zur optik der farbanstriche. Tech. Phys. 12, 593601 (1931).
57.Guo, R., Fang, L., Dong, W., Zheng, F., and Shen, M.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Mater. Chem. C 114, 2139021396 (2010).
58.Satar, N.S.A., Aziz, A.W., Yaakob, M.K., Yahya, M.Z.A., Hassan, O.H., Kudin, T.I.T., and Kaus, N.H.M.: Experimental and first-principles investigations of lattice strain effect on electronic and optical properties of biotemplated BiFeO3 nanoparticles. J. Phys. Chem. C 120, 2601226020 (2016).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed