Hostname: page-component-6d856f89d9-fb4gq Total loading time: 0 Render date: 2024-07-16T08:34:36.600Z Has data issue: false hasContentIssue false

Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold

Published online by Cambridge University Press:  18 January 2018

Nicolas J. Briot*
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA
T. John Balk
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA
*
Address all correspondence to Nicolas J. Briot at njbr222@uky.edu
Get access

Abstract

Regions of deformation resulting from nanoindentation testing of nanoporous gold (np-Au) are characterized by cross-sectional imaging of the ligament structure directly beneath the surface, after lift-out using focused ion beam techniques. Permanent deformation of the porous structure was not exclusively confined to the region directly in contact with the indenter but extended much deeper into the sample. Implications of these observations with respect to previous measurements of the mechanical properties of np-Au are discussed. The conclusions provide initial insight into the deformation behavior of np structures during nanoindentation, as well as a basis for extending this technique to other np metals.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ngô, B.-N.D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., and Weissmüller, J.: Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144 (2015).Google Scholar
2. Lührs, L., Soyarslan, C., Markmann, J., Bargmann, S., and Weissmüller, J.: Elastic and plastic Poisson's ratios of nanoporous gold. Scr. Mater. 110, 65 (2016).Google Scholar
3. Mangipudi, K.R., Epler, E., and Volkert, C.A.: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115 (2016).CrossRefGoogle Scholar
4. Roschning, B. and Huber, N.: Scaling laws of nanoporous gold under uniaxial compression: effects of structural disorder on the solid fraction, elastic Poisson's ratio, Young's modulus and yield strength. J. Mech. Phys. Solids 92, 55 (2016).Google Scholar
5. Badwe, N., Chen, X., and Sieradzki, K.: Mechanical properties of nanoporous gold in tension. Acta Mater. 129, 251 (2017).Google Scholar
6. Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
7. Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).CrossRefGoogle ScholarPubMed
8. Hodge, A.M., Hayes, J.R., Caro, J.A., Biener, J., and Hamza, A.V.: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).Google Scholar
9. Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmüller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).CrossRefGoogle Scholar
10. Chen, Q. and Pugno, N.M.: Mechanics of hierarchical 3-D nanofoams. EPL 97, 26002 (2012).Google Scholar
11. Sun, X.-Y., Xu, G.-K., Li, X., Feng, X.-Q., and Gao, H.: Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113, 023505 (2013).Google Scholar
12. Huber, N., Viswanath, R.N., Mameka, N., Markmann, J., and Weißmüller, J.: Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252 (2014).CrossRefGoogle Scholar
13. Briot, N.J. and Balk, T.J.: Developing scaling relations for the yield strength of nanoporous gold. Philos. Mag. 95, 2955 (2015).CrossRefGoogle Scholar
14. Hakamada, M. and Mabuchi, M.: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).Google Scholar
15. Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., and Satcher, J.H.: Nanoporous Au: a high yield strength material. J. Appl. Phys. 97, 024301 (2005).CrossRefGoogle Scholar
16. Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., and Hamza, A.V.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).CrossRefGoogle Scholar
17. Kumar, P.S., Ramachandra, S., and Ramamurty, U.: Effect of displacement-rate on the indentation behavior of an aluminum foam. Mater. Sci. Eng. A 347, 330 (2003).Google Scholar
18. Andrews, E.W., Gioux, G., Onck, P., and Gibson, L.J.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701 (2001).Google Scholar
19. Miller, R.E.: A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. Int. J. Mech. Sci. 42, 729 (2000).CrossRefGoogle Scholar
20. Wu, Y., Yi, N., Huang, L., Zhang, T., Fang, S., Chang, H., Li, N., Oh, J., Lee, J.A., Kozlov, M., Chipara, A.C., Terrones, H., Xiao, P., Long, G., Huang, Y., Zhang, F., Zhang, L., Lepro, X., Haines, C., Lima, M.D., Lopez, N.P., Rajukumar, L.P., Elias, A.L., Feng, S., Kim, S.J., Narayanan, N.T., Ajayan, P.M., Terrones, M., Aliev, A., Chu, P., Zhang, Z., Baughman, R.H., and Chen, Y.: Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nat. Commun. 6, 6141 (2015).Google Scholar
21. Mameka, N., Wang, K., Markmann, J., Lilleodden, E.T., and Weissmüller, J.: Nanoporous gold—testing macro-scale samples to probe small-scale mechanical behavior. Mater. Res. Lett. 4, 27 (2015).Google Scholar
22. Jin, H.-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., and Weissmüller, J.: Deforming nanoporous metal: role of lattice coherency. Acta Mater. 57, 2665 (2009).CrossRefGoogle Scholar
23. Bürckert, M., Briot, N.J., and Balk, T.J.: Uniaxial compression testing of bulk nanoporous gold. Philos. Mag. 97, 1157 (2017).Google Scholar
24. Briot, N.J., Kennerknecht, T., Eberl, C., and Balk, T.J.: Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos. Mag. 94, 847 (2014).CrossRefGoogle Scholar
25. Hu, K., Ziehmer, M., Wang, K., and Lilleodden, E.T.: Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philos. Mag. 96, 3322 (2016).Google Scholar
26. El-Zoka, A.A., Langelier, B., Botton, G.A., and Newman, R.C.: Enhanced analysis of nanoporous gold by atom probe tomography. Mater. Charact. 128, 269 (2017).CrossRefGoogle Scholar
27. Jeon, H., Kang, N.-R., Gwak, E.-J., Jang, J.-I., Han, H.N., Hwang, J.Y., Lee, S., and Kim, J.-Y.: Self-similarity in the structure of coarsened nanoporous gold. Scr. Mater. 137, 46 (2017).Google Scholar
28. Sun, Y. and Balk, T.J.: A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking. Scr. Mater. 58, 727 (2008).CrossRefGoogle Scholar
29. Wang, K. and Weissmuller, J.: Composites of nanoporous gold and polymer. Adv. Mater. 25, 1280 (2013).Google Scholar
30. Farkas, D., Caro, A., Bringa, E., and Crowson, D.: Mechanical response of nanoporous gold. Acta Mater. 61, 3249 (2013).Google Scholar